Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 767-774    DOI: 10.11901/1005.3093.2017.533
  研究论文 本期目录 | 过刊浏览 |
Fe催化硅藻土碳热还原反应制备3C-SiC及其机理
王军凯, 张远卓, 李赛赛, 葛胜涛, 宋健波, 张海军()
武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
Catalytic Carbothermal Reduction Synthesis and Mechanism of 3C-SiC from Diatomite with Fe as Catalyst
Junkai WANG, Yuanzhuo ZHANG, Saisai LI, Shengtao GE, Jianbo SONG, Haijun ZHANG()
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
引用本文:

王军凯, 张远卓, 李赛赛, 葛胜涛, 宋健波, 张海军. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理[J]. 材料研究学报, 2018, 32(10): 767-774.
Junkai WANG, Yuanzhuo ZHANG, Saisai LI, Shengtao GE, Jianbo SONG, Haijun ZHANG. Catalytic Carbothermal Reduction Synthesis and Mechanism of 3C-SiC from Diatomite with Fe as Catalyst[J]. Chinese Journal of Materials Research, 2018, 32(10): 767-774.

全文: PDF(5660 KB)   HTML
摘要: 

以工业硅藻土和液态酚醛树脂为原料,以硝酸铁为催化剂前驱体,采用催化碳热还原反应方法制备了3C-SiC粉体,采用XRD、SEM和TEM分析了产物的物相组成和显微结构,研究了反应温度、催化剂用量和保温时间对合成3C-SiC粉体的影响。结果表明:1) 当添加1.0%(质量分数)的Fe作催化剂在1400℃反应3 h后即可合成纯相的3C-SiC;相比之下,不使用催化剂时在相同条件下3C-SiC的产率只有15%;2) 所合成的3C-SiC颗粒的粒径大部分为纳米级,少量为亚微米级;3) 基于密度泛函理论的计算结果表明,催化剂Fe促进了Si-O键的断裂。

关键词 无机陶瓷材料3C-SiC催化碳热还原反应硅藻土密度泛函理论    
Abstract

Nanopowders of 3C-SiC were synthesized at 1400°C for 3 h in Ar atmosphere via catalytic carbothermal reduction reaction method with industrial diatomite powders and phenolic resin as raw materials and ferric nitrate as catalyst precursor. XRD, SEM and TEM analysis were employed to characterize the phase composition and microstructure of the final products. The effect of temperature, catalyst content and holding time on the formation of the SiC powders was investigated. The results show that: 1) 3C-SiC can be synthesized at 1400°C for 3 h with 1.0% (mass fraction) Fe as catalyst. In the contrast, for the case without Fe catalyst, only small amount of 3C-SiC was obtained in the final products under identical condition; 2) The as-prepared 3C-SiC nanopowders are granular in morphology, and the diameters of most particles are in nano-scales; 3) Density Functional Theory (DFT) calculation results further show that the Fe catalyst played important role in breaking the Si-O chemical bond.

Key wordsinorganic ceramic materials    3C-SiC    catalytic carbothermal reduction reaction    diatomite    density functional theory
收稿日期: 2017-09-11     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51472184,51472185),湖北省教育厅高等学校优秀中青年科技创新团队计划(T201602)
作者简介:

作者简介 王军凯,男,1988年生,博士生

Chemical composition SiO2 Al2O3 Fe2O3 K2O MgO TiO2 CaO Na2O
Mass fraction/% 92.93 2.02 1.42 0.30 0.27 0.11 0.19 2.29
表1  硅藻土的化学组成
图1  不使用催化剂时在不同温度反应3 h试样的XRD图谱
图2  以2.0% Fe为催化剂时在不同温度反应3 h后所得试样的XRD图谱
图3  加入2.0% Fe催化剂在不同温度反应3 h后所得试样各物相的含量
图4  加入2.0% Fe催化剂在1400℃反应不同时间后所得试样的XRD图谱
图5  加入2.0% Fe在1400℃反应不同时间后所得样品中各物相的含量
图6  Fe催化剂的用量不同在1400℃反应3 h后所得试样的XRD图谱
图7  Fe催化剂的加入量不同在1400℃反应3 h后所得试样中各物相的含量
图8  3C-SiC粉体的SEM照片和相应的EDS结果
图 9  3C-SiC粉体的TEM、SAED和HRTEM照片
图10  硅藻土原料的SEM图片
图11  DFT计算模型
Si-O bond as shown in Fig. 11c Before adsorption After adsorption
Bond length in Fig.11c Si(1)-O(1) 1.894 3.219
Si(1)-O(2) 1.607 1.647
Si(1)-O(3) 1.596 1.665
Si(2)-O(4) 1.894 3.380
Si(2)-O(5) 1.607 1.676
Si(2)-O(6) 1.596 1.666
表2  Fe4纳米团簇吸附前后SiO2 (101)面上Si-O键的键长
图12  催化合成SiC纳米粉体的示意图
[1] Chiew Y L, Cheong K Y.A review on the synthesis of SiC from plant-based biomasses[J]. Mater Sci Eng B, 2011, 176(13): 951
[2] Zekentes K, Rogdakis K.SiC nanowires: material and devices[J]. J Phys D: Appl Phys, 2011, 44(13): 133001
[3] Wu R, Zhou K, Yue C Y, et al.Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Prog Mater Sci, 2015, 72: 1
[4] Tan C, Liu J, Zhang H, et al.Low temperature synthesis of 2H-SiC powders via molten-salt-mediated magnesiothermic reduction[J]. Ceram Int, 2017, 43(2): 2431
[5] Shi L, Zhao H, Yan Y, et al.Synthesis and characterization of submicron silicon carbide powders with silicon and phenolic resin[J]. Powder Technol, 2006, 169(2): 71
[6] Zhao H, Shi L, Li Z, et al.Silicon carbide nanowires synthesized with phenolic resin and silicon powders[J]. Physica E, 2009, 41(4): 753
[7] Wang J K, Li J Y, Liang F, et al.Low-temperature catalytic synthesis of SiC powders using phenolic resin as carbon resource[J]. J Chin Ceram Soc, 2016, 44(12): 1798(王军凯, 李俊怡, 梁峰等. 以酚醛树脂为碳源低温催化反应合成碳化硅粉体[J]. 硅酸盐学报, 2016, 44(12): 1798)
[8] Wang J, Zhang Y, Li J, et al.Low temperature catalytic synthesis of β-SiC powders via microwave heating[J]. J Inorg Mater, 2017, 31(7): 725
[9] Wang J, Zhang Y, Li J, et al.Catalytic effect of cobalt on microwave synthesis of β-SiC powder[J]. Powder Technol, 2017, 317: 209
[10] Bao Z, Weatherspoon M R, Shian S, et al.Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132): 172
[11] Matovic B, Saponjic A, Devecerski A.Fabrication of SiC by carbothermal-reduction reactions of diatomaceous earth[J]. J Mater Sci, 2007, 42(14): 5448
[12] ?aponji? A, Matovi? B, A. D, et al. Preparation of nanosized non-oxide powders using diatomaceous earth[J]. Sci Sinter, 2009, 41(2): 151
[13] ?aponji? A, Matovi? B, Babi? B, et al.Cost-effective synthesis of Si3N4-SiC nanocomposite powder[J]. Optoelectron Adv Mat, 2010, 4(11): 1681
[14] Delley B.From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18): 7756
[15] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 78(18): 3865
[16] Zhang J, Yan S, Jia Q, et al.Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route[J]. Physica E, 2016, 80: 19
[17] Xin L, Shi Q, Chen J, et al.Morphological evolution of one-dimensional SiC nanomaterials controlled by sol-gel carbothermal reduction[J]. Mater Charact, 2012, 65: 55
[18] Wang J K, Zhang H J, Liang F, et al.Effect of pore structure on preparation of carbon nanotubes via pyrolysis of phenolic resin[J]. J Chin Ceram Soc, 2017, 45(3): 416(王军凯, 张海军, 梁峰等. 孔结构对热解酚醛树脂制备碳纳米管的影响[J]. 硅酸盐学报, 2017, 45(3): 416.)
[19] Wang J, Deng X, Zhang H, et al.Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin[J]. Physica E, 2017, 86: 24
[1] 刘裕, 梁志奇, 赵崧, 常春蕊. 碳纳米管掺杂影响液晶物理参数与显示性能的实验及第一性原理计算[J]. 材料研究学报, 2022, 36(6): 425-434.
[2] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[3] 刘莹莹, 万隆, 王俊沙. 溶胶凝胶原位成型陶瓷结合剂砂轮中碳化硅的改性[J]. 材料研究学报, 2017, 31(9): 659-664.
[4] 赵思勰, 晏华, 李云涛, 汪宏涛, 胡志德. 石蜡/硅藻土定型相变材料的结构和热性能[J]. 材料研究学报, 2017, 31(7): 502-510.
[5] 王亚超, 赵江平. 化学改性硅藻土制备阻燃材料及微结构研究*[J]. 材料研究学报, 2016, 30(7): 524-530.
[6] 陈伟 罗刚 熊良银 陈德敏 刘实 杨柯. 长期热致吸放氢循环对载钯硅藻土储氢性能的影响[J]. 材料研究学报, 2011, 25(3): 327-332.
[7] 黄平 杨春 介伟伟. GaN基SiTrO3薄膜的生长偏转模型和模拟研究[J]. 材料研究学报, 2010, 24(4): 389-394.