Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (12): 888-896    DOI: 10.11901/1005.3093.2016.410
  本期目录 | 过刊浏览 |
2205和2507双相不锈钢双道次热压缩条件下的微观组织演变及变形行为*
王立新1,李花兵2,李国平1,唐正友3(),马明3
1. 山西太钢不锈钢股份有限公司 太原 030003
2. 东北大学冶金学院 沈阳 110819
3. 东北大学材料科学与工程学院 沈阳 110819
Microstructural Evolution and Flow Behavior of 2205 and 2507 Duplex Stainless Steel during Double Pass Hot Compressive Deformation
Lixin WANG1,Huabing LI2,Guoping LI1,Zhengyou TANG3,*(),Ming MA3
1. Shanxi Taigang Stainless Steel Co Ltd, Taiyuan 030003, China
2. School of Metallurgy, Northeastern University, Shenyang 110819, China
3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

王立新,李花兵,李国平,唐正友,马明. 2205和2507双相不锈钢双道次热压缩条件下的微观组织演变及变形行为*[J]. 材料研究学报, 2016, 30(12): 888-896.
Lixin WANG, Huabing LI, Guoping LI, Zhengyou TANG, Ming MA. Microstructural Evolution and Flow Behavior of 2205 and 2507 Duplex Stainless Steel during Double Pass Hot Compressive Deformation[J]. Chinese Journal of Materials Research, 2016, 30(12): 888-896.

全文: PDF(10607 KB)   HTML
摘要: 

对DSS2205和SDSS2507进行1000~1200℃的双道次热压缩实验, 以研究热变形道次间隔过程中双相不锈钢的微观组织演变及其对合金后续变形行为的影响。结果表明: 较高的变形温度(1200℃)不利于奥氏体稳定。随着保温时间的延长, γδ相变使得奥氏体占比逐渐降低, 亚稳铁素体再结晶晶粒明显长大, 合金第二道次热变形时的流变应力水平逐渐降低。在较低的变形温度下(1000℃), δγ相变占据主导, 保温时间的延长促使铁素体晶界处形成大量的块状奥氏体相, 抑制了铁素体再结晶晶粒长大。合金在第二道次热压缩变形时, 块状奥氏体相的形成致使铁素体内大量位错发生缠结, 并聚集在奥氏体/铁素体相界面处。对比DSS2205和SDSS2507较低温度下的微观组织演变过程可知, 双相不锈钢第二道次变形抗力的提高主要与保温过程中铁素体内块状奥氏体相的形成有关。

关键词 金属材料双相不锈钢热变形双道次热压缩流变应力静态软化    
Abstract

Double passes hot compression tests of DSS2205 and SDSS2507 were conducted in order to investigate the microstructural evolution in the interval of hot deformation and its corresponding effect on the subsequent flow behavior of duplex stainless steels. The results indicated that, the higher deformation temperature(1200℃) decreased the stability of the austenite. As the holding time increased, the growth of ferritic recrystallized grains could be observed and the occurrence of γδ decreased the phase proportion of the austenite, which caused that the flow stress of DSSs in the second pass of hot compression decreased. In a lower temperature(1000℃), δγ became dominant and a large number of granular austenite formed in the grain boundary of the ferrite when the holding time increased and the growth of ferritic recrystallized grains was inhibited. During the second pass of compression, dislocations in the ferrite tangled around the phase boundaries between two phases due to the formation of granular austenite. Compared with the microstructural evolutions of DSS2205 and SDSS2507 at lower temperature, it was known that the increase of deformation resistance in the second pass deformation of DSSs was mainly related to the formation of the granular austenite.

Key wordsmetallic materials    duplex stainless steel    thermal deformation    double passes hot compression    flow stress    static softening
收稿日期: 2016-07-19     
基金资助:* 国家科技支撑计划项目(2012BAE04B01),国家高技术研究发展计划(863)(2015AA034301),中央高校基本科研业务费专项资金资助项目(N150204007, L1502034)和国家自然科学基金项目(51574077)
Steel Cr Mo Ni N Mn C Si Fe
DSS2205 23.61 3.36 5.12 0.19 1.67 0.019 0.37 Bal.
SDSS2507 25.21 4.23 7.08 0.26 1.08 0.03 0.02 Bal.
表1  实验钢化学成分(质量分数, %)
图1  DSS2205及SDSS2507合金第一道次变形后不同保温时间下的微观组织
图2  不同温度及保温时间下DSS2205 and SDSS2507合金中奥氏体相占比统计
图3  采用J-MAT Pro计算的DSS2205和SDSS2507合金的平衡相图
图4  DSS2205和SDSS2507合金在1000℃条件下保温100 s后的组织形貌
图5  DSS2205 和SDSS2507合金保温前后铁素体的金相组织
图6  DSS2205不同温度下保温100 s的透射组织分析
图7  DSS2205和SDSS2507双道次热压缩应力-应变曲线
图8  DSS2205和SDSS2507合金保温过程中的静态软化率
图9  两种合金两道次变形过程中的变形抗力比
图10  1000℃/100 s条件下DSS2205第二道次变形后的微观组织
1 XIONG Yunlong, LOU Yangchun, LIU Xinfeng, New progress of stainless steel, Hot Working Technology, (5), 51(2005)
1 (熊云龙, 娄延春, 刘新峰, 不锈钢材料研究的新进展, 热加工工艺, (5), 51(2005))
2 Li Ma, Shengsun Hu, Junqi Shen, Jian Han, Zhixiong Zhu, Effects of Cr content on the microstructure and properties of 26Cr-3.5Mo-2Ni and 29Cr-3.5Mo-2Ni super ferritic stainless steels, Journal of Materials Science & Technology, 32(6), 552(2016)
3 J. O. Nilsson, Super duplex stainless steel, Materials Science and Technology, 8(8), 685(1992)
4 Yueling Guo, En-Hou Han, Jianqiu Wang, Effects of forging and heat treatments on the microstructure and oxidation behavior of 316LN stainless steelin high temperature water, Journal of Materials Science & Technology, 31(4), 403(2015)
5 Y. H. Zhou, Y. M. Li, Y. C. Liu, Q. Y. Guo, C. X. Liu, L. M. Yu, C. Li, H. J. Li, Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging, Journal of Materials Research, 30(23), 3642(2015)
6 H. C. Wu, B. Yang, Y. Z. Shi, Q. Gao, Y. Q. Wang, Crack initiation mechanism of Z3CN20.09M duplex stainless steel during corrosion fatigue in water and air at 290℃, Journal of Materials Science & Technology, 31(11), 1144(2015)
7 M. Pohl, O. Storz, T. Glogowski.Effect of intermetallic precipitations on the properties of duplex stainless steel, Materials Characterization, 58(1), 65(2007)
8 Xiaosheng Zhou, Chenxi Liu, Liming Yu, Yongchang Liu, Huijun Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steelsfor power and nuclear plants: a review, Journal of Materials Science & Technology, 31(3), 235(2015)
9 GAO Wa, LUO Jianmin, YANG Jianjun, Research progress and application of double phase stainless steel, Ordnance Material Science and Engineering, 28(3), 61(2005)
9 (高娃, 罗建民, 杨建君, 双相不锈钢的研究进展及其应用, 兵器材料科学与工程, 28(3), 61(2005))
10 A. Momeni, K. Dehghani, M. C. Poletti, Law of mixture used to model the ?ow behavior of a duplex stainless steel at high temperatures, Materials Chemistry and Physics, 139, 747(2013)
11 O. Balancin, W. A. M.Hoffmann, J. J. Jonas, Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures, Metallurgical and Materials Transactions A, 31(5), 1353(2000)
12 H. Farnoush, A. Momeni, K. Dehghani, J. A. Mohandesi, Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases, Materials & Design, 31(1), 220(2010)
13 A. Pinol-Jue, A.Iza-Mendia, I.Gutierrez, δ/γ interface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel, Metallurgical and Materials Transactions A, 31(6), 1671(2000)
14 Y. H. Zhou, Y. C. Liu, X. S. Zhou, C. X. Liu, L. M. Yu, C. Li, B. Q. Ning, Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel, Journal of Materials Research, 30(13), 2090(2015)
15 J. M. Cabrera, A. Mateo, L. Llanes, J. M. Prado, M. Anglada, Hot deformation of duplex stainless steels, Journal of Materials Processing Technology, 143(36), 321(2003)
16 E. Evangelista, H. J. Mcqueen, M. Niewczas, M. Cabibbo, Hot workability of 2304 and 2205 duplex stainless steels, Canadian Metallurgical Quarterly, 43(3), 339(2003)
17 MA Ming, DING Hua, TANG Zhengyou, ZHAO Jingwei, JIANG Zhouhua, FAN Guangwei, Effects of temperature and strain rate on flow behavior and microstructural evolution of a super duplex stainless steel under hot deformation, Journal of Iron and Steel Research International, 23(3), 244(2016)
18 D. N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G. J. Qiao, Deformation characteristic and prediction of flow stress for as-cast 21Cr economical duplex stainless steel under hot compression, Materials & Design, 51, 975(2013)
19 L. Chen, X. Ma, X. Liu, L. Wang, Processing map for hot working characteristics of a wrought 2205 duplex stainless steel, Materials & Design, 32(3), 1292(2011)
20 CHEN Yulai, ZHANG Tairan, WANG Yide, LI Jingyuan, Effect of O, N and Ni content on the hot rolling plasticity of 0Cr25Ni7Mo4N duplex stainless steel, Acta Metallurgica Sinica, 50(8), 905(2014)
20 (陈雨来, 张泰然, 王一德, 李静媛, O, N和Ni含量对0Cr25Ni7Mo4N 双相不锈钢热轧塑性的影响, 金属学报, 50(8), 905(2014))
21 M. Jin, L. U. Bo, X. G. Liu, H. Guo, Static recrystallization behavior of 316LN austenitic stainless steel, Iron and Steel Research International, 20(11), 67(2013)
22 YANG Lianhong, LI Longjiao, LIU Yazheng, ZHOU Leyu, Thermal deformation behavior of 430 ferrite stainless steel, Heat Treatment of Metals, 35(12), 78(2011)
22 (杨连宏, 李龙蛟, 刘雅政, 周乐育, 430铁素体不锈钢的热变形行为, 金属热处理, 36(12), 78(2011))
23 Y. Han, H. Wu, W. Zhang, D. Zou, Constitutive equation and dynamic rescrystallization behavior of as-cast 254SMO super-austenitic stainless steel, Materials & Design, 69, 230(2015)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.