Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (11): 801-810    DOI: 10.11901/1005.3093.2016.380
  本期目录 | 过刊浏览 |
深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响*
谢尘1,2,3,周龙梅1,2,3,闵娜1,2,3,吴晓春1,2,3
1. 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200072
2. 上海大学 上海市钢铁冶金新技术开发应用重点实验室 上海 200072
3. 上海大学材料科学与工程学院 上海 200072
Effect of Deep Cryogenic Treatment on Carbon Partition of Tempered High Carbon High Alloy Tool Steel SDC99
Chen XIE1,2,3,Longmei ZHOU1,2,3,Na MIN1,2,3,Xiaochun WU1,2,3,**
1. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
2. Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai 200072, China
3. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

谢尘,周龙梅,闵娜,吴晓春. 深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响*[J]. 材料研究学报, 2016, 30(11): 801-810.
Chen XIE, Longmei ZHOU, Na MIN, Xiaochun WU. Effect of Deep Cryogenic Treatment on Carbon Partition of Tempered High Carbon High Alloy Tool Steel SDC99[J]. Chinese Journal of Materials Research, 2016, 30(11): 801-810.

全文: PDF(6997 KB)   HTML
摘要: 

采用内耗和三维原子探针结合硬度测试研究了深冷处理对高碳高合金工具钢SDC99不同回火温度下组织和碳偏聚情况的影响。结果表明: 深冷处理显著提高工具钢SDC99的硬度, 深冷处理试样较淬火试样硬度提高2HRC, 深冷处理并200℃回火试样比常规热处理试样硬度提高1.5HRC; 深冷处理后碳原子与位错的相互作用增强, 内耗的Snoek-Kê-K?ster (SKK)峰强度提高, 位错密度增加; 深冷处理后碳原子的偏聚程度加剧, 淬火、深冷、淬火并200℃回火、深冷并200℃回火试样中富碳相的碳浓度峰值分别为2%、8%、8%和15%(原子分数)。

关键词 金属材料碳配分三维原子探针深冷处理内耗    
Abstract

The effect of deep cryogenic treatment on microstructure and carbon partition behavior of high carbon high alloy tool steel SDC99, which had been tempered at different temperatures was investigated by three-dimensional atom probe and internal friction combined with the hardness testing. The results show that the hardness of SDC99 steel significantly increased after deep cryogenic treatment. The hardness of SDC99 sample after deep cryogenic treatment is 2 HRC higher than the quenching sample, while the hardness of sample subjected to deep cryogenic treated and then tempered at 200oC is 1.5 HRC higher than the conventional heat treated sample. The enlargement of the Snoek-Kê-K?ster (SKK) peak height indicates stronger interaction between the interstitial carbon atoms and dislocations after deep cryogenic treatment. In comparison to the merely quenched sample, the dislocation density of the quenched and deep cryogenic treated sample increased by 17%. The extent of carbon segregation was enhanced significantly after deep cryogenic treatment. The peak of the carbon atom concentration in carbon-rich regions of SDC99 steel after quenched, deep cryogenic treated, quenched and then tempered at 200℃, deep cryogenic treated and then tempered at 200oC are 2%, 8%, 8% and 15% (atomic fraction) respectively.

Key wordsmetallic materials    carbon partition    three-dimensional atom probe    deep cryogenic treatment    internal friction
收稿日期: 2016-07-05     
基金资助:* 国家自然科学基金51171104和51301100资助项目
Nomenclature Heat treatment and deep cryogenic treatment processes
Q 1030℃×30 min, oil quenching
QT 100 1030℃×30 min, oil quenching +100℃×2 h
QT 200 1030℃×30 min, oil quenching +200℃×2 h
DCT 1030℃×30 min, oil quenching +(-196)℃×8 h
DCT 100 1030℃×30 min, oil quenching +(-196)℃×8 h+ 100℃×2 h
DCT 200 1030℃×30 min, oil quenching +(-196)℃×8 h+ 200℃×2 h
表1  SDC99钢热处理和深冷处理工艺
图1  SDC99钢经不同工艺处理后的硬度
图2  SDC99钢经Q工艺后的马氏体TEM像: (a) 明场相; (b) 暗场相和衍射斑点
图3  SDC99钢经QT 200工艺后的马氏体TEM像: (a) 明场相; (b) 暗场相和衍射斑点
图4  SDC99钢经DCT工艺后的马氏体TEM像: (a) 明场相; (b) 暗场相和衍射斑点
图5  SDC99钢经DCT 200工艺后的马氏体TEM像: (a) 明场相; (b) 暗场相和衍射斑点
图6  SDC99钢不同处理后的温度-内耗谱分峰
Nomenclature Tm/K f / Hz H / eV τ0 /10-14 s
Q 532.85 14.216 1.260 6.46
QT 100 532.55 14.756 1.257 6.05
QT 200 532.65 15.075 1.256 6.20
DCT 522.75 14.372 1.234 6.15
DCT 100 522.85 14.856 1.233 6.13
DCT 200 522.75 15.200 1.232 6.22
表2  SDC99钢不同工艺处理试样内耗峰对应的参数
图7  SDC99钢不同处理后的SKK峰
Nomenclature Q QT 100 QT 200 DCT DCT 100 DCT 200
Dislocation density (×1013 m-2) 6.71 7.35 7.54 7.85 8.59 8.68
表3  SDC99钢不同工艺处理试样的位错密度
图8  淬火和深冷态SDC99钢试样的XRD谱
图9  (a) Q试样中碳原子的空间分布图(试样尺寸为38 nm×38 nm×250 nm); (b) 截取的box中碳的浓度曲线(box尺寸为?10 nm×40 nm); (c) 碳浓度为4%, 4.5%, 5%的等浓度面分布图
图10  (a) DCT试样中碳原子的空间分布图(试样尺寸为76 nm×73 nm×185 nm); (b) 截取的box中碳的浓度曲线(box尺寸为?10 nm×50 nm); (c) 碳浓度为4%, 4.5%, 5% (原子分数) 的等浓度面分布图
图11  (a) QT 100试样中碳原子的空间分布图(试样尺寸为84 nm×83 nm×188 nm); (b) 碳浓度为4%的等浓度面分布图; (c) (d) 截取的box中碳、铬的浓度曲线 (box尺寸为?10 nm×40 nm)
图12  (a) DCT 100试样中碳原子的空间分布图(试样尺寸为78 nm×78 nm×269 nm); (b) 碳浓度为4%(原子分数)的等浓度面分布图; (c) (d) 截取的box中碳、铬的浓度曲线 (box尺寸为?10 nm×40 nm)
图13  (a) QT 200试样中碳原子的空间分布图(试样尺寸为50 nm×49 nm×155 nm); (b) (c) 截取的区域中碳、铬的浓度曲线 (区域尺寸为?10 nm×20 nm)
图14  (a) DCT 200试样中碳原子的空间分布图(试样尺寸为76 nm×75 nm×243 nm); (b) (c) 截取的区域中碳、铬的浓度曲线 (区域尺寸为?10 nm×40 nm)
1 Simranpreet Singh Gill, Jagdev Singh, Rupinder Singh, Harpreet Singh, Metallurgical principles of cryogenically treated tool steels - A review on the current state of science, The International Journal of Advanced Manufacturing Technology, 54(1), 59(2011)
2 S?tk? Akincio?lu, Hasan G?kkaya, ?lyas Uygur, A review of cryogenic treatment on cutting tools, The International Journal of Advanced Manufacturing Technology, 78(9-12), 1609(2015)
3 A. Bensely, S. Venkatesh, D. Mohan Lal, G. Nagarajan, A. Rajadurai, K. Junik, Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel, Materials Science and Engineering A, 479(1-2), 229(2008)
4 Nursel Altan ?zbek, Adem ?i?ek, Mahmut Gülesin, Onur ?zbek, Investigation of the effects of cryogenic treatment applied at different holding times to cemented carbide inserts on tool wear, International Journal of Machine Tools and Manufacture, 86(6), 34(2014)
5 Hadi Ghasemi Nanesa, Mohammad Jahazi, Reza Naraghi, Martensitic transformation in AISI D2 tool steel during continuous cooling to 173 K, Journal of Materials Science, 50(17), 5758(2015)
6 Swamini A. Chopra, V. G.Sargade, Metallurgy behind the Cryogenic Treatment of Cutting Tools: An Overview, Materials Today: Proceedings, 2(4-5), 1814(2015)
7 V. G. Gavriljuk, W. Theisen, V. V. Sirosh, E. V. Polshin, A. Kortmann, G. S. Mogilny, Yu. N.Petrov, Ye. V. Tarusin , Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Materialia, 61(5), 1705(2013)
8 Matteo Villa, Karen Pantleon, Marcel A.J. Somers, Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering, Acta Materialia, 65(65), 383(2014)
9 F. Meng, K. Tagashira, R. Azuma, H. Sohm, Role of eta-carbide precipitations in the wear resistance improvements of Fe-12Cr-Mo-V-1.4 C tool steel by cryogenic treatment, ISIJ International, 34(20), 205(1994)
10 S. H. Li, L. H. Deng, X. C. Wu, Y. A. Min, H. B. Wang, Influence of deep cryogenic treatment on microstructure and evaluation by internal friction of a tool steel, Cryogenics, 50(11-12), 754(2010)
11 Debdulal Das, Apurba Kishore Dutta, Kalyan Kumar Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness, Materials Science and Engineering A, 527(9), 2182(2010)
12 Debdulal Das, Apurba Kishore Dutta, Kalyan Kumar Ray, Sub-zero treatments of AISI D2 steel: Part II. Wear behavior, Materials Science and Engineering A, 527(9), 2194(2010)
13 Seyed Ebrahim Vahdat, Keyvan Seyedi Niaki, Mechanism of Precipitation of Carbides during Deep Cryogenic Processing in 1.2542 Tool Steel, Materials Today: Proceedings, 2(4), 1859(2015)
14 J. Y. Huang, Y. T. Zhu, X. Z. Liao, I. J. Beyerlein, M. A. Bourke, T. E. Mitchell, Microstructure of cryogenic treated M2 tool steel, Materials Science and Engineering A, 339(1), 241(2003)
15 Marcos Pérez, Francisco Javier Belzunce, The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel, Materials Science and Engineering A, 624, 32(2015)
16 V. G. Gavriljuk, V. A. Sirosh, YU. N. Petrov, A. I.Tyshchenko, W. Theisen, A. Kortmann, Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment, Metallurgical and Materials Transactions A, 45(5), 2453(2014)
17 G. Krauss, ZHONG Ping, GU Baozhu, Microstructure transformation of tempered martensite in steel during tempering, Ordnance Material Science and Engineering, (7), 55(1987)
17 (G. Krauss, 钟平, 古宝珠,钢中马氏体回火时的组织转变, 兵器材料科学与工程, (7), 55(1987))
18 QIAN Shiqiang, LI Manping, YAN Minjie,Research on martensiticmorphology and tempering characteristic of T8 steel after deep cryogenic treatment,Hot Working Technology,(4),3(2001)
18 (钱士强, 李曼萍, 严敏杰, T8钢深冷处理后的马氏体形态和回火特性研究, 热加工工艺, (4), 3(2001))
19 J. W. Li, Y. Feng, L. L. Tang, X. C. Wu, FEM prediction of retained austenite evolution in cold work die steel during deep cryogenic treatment, Materials Letters, 100(2), 274(2013)
20 I. S. Golovin, H. Neuh?user, A. Rivière, A. Strahl, Anelasticity of Fe-Al alloys, revisited, Intermetallics, 12, 125(2004)
21 LI Shaohong,Research of microstructure design and control on high strength high toughness cold work die steel,PhD thesis,Shanghai Univercity(2011)
21 (李绍宏,高强韧冷作模具钢组织设计及组织控制研究,博士学位论文 上海大学(2011))
22 J. J. Hoyos, A. A. Ghilarducci, D. Mari, Evaluation of dislocation density and interstitial carbon content in quenched and tempered steel by internal friction, Materials Science and Engineering A, 640(29), 460(2015)
23 Y. N. Wang, M. Gu, L. H. Sun, K. L. Ngai, Mechanism of Snoek-K?ster relaxation in body-centered-cubic metals, Physical Review B, 50(6), 3525(1994)
24 I. Tkalcec, D. Mari, Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects, Materials Science and Engineering A, 370(1-2), 213(2004)
25 D. Das, A. K. Dutta, V. Toppo, K. K. Ray, Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel, Materials and Manufacturing Processes, 22(4), 474(2007)
26 M. Hayakawa, M. Tanigami, M. Oka, Low temperature aging of the freshly formed martensite in an Fe-Ni-C Alloy, Metallurgical Transactions A, 16A(10), 1745(1985)
27 F. G. Caballero, C. Garcia-Mateo, M. J. Santofimia, M. K. Miller, C.García de Andrés, New experimental evidence on the incomplete transformation phenomenon in steel, Acta Materialia, 57(1), 8(2009)
28 Chen Zhu, Alfred Cerezo, George D.W. Smith, Carbide characterization in low-temperature tempered steels, Ultramicroscopy, 109(5), 545(2009)
29 A. I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O. N. Razumov, A. P. Skoblik, V. A. Sirosh, Yu. N. Petrov , V. G. Gavriljuk, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel, Materials Science and Engineering A, 527(26), 7027(2010)
30 N. Min, H. M. Li, C. Xie, X. C. Wu, Experimental investigation of segregation of carbon atoms due to sub-zero cryogenic treatment in cold work tool steel by mechanical spectroscopy and atom probe tomography, Archives of Metallurgy and Materials, 60(2), 1109(2015)
31 HU Gengxiang, CAI Xun, Ed., Fundamentals of Material Science(The second edition) (Shanghai, Shanghai Jiaotong University Press, 2000)p.152
31 (胡赓祥, 蔡珣主编,材料科学基础(第二版)( 上海, 上海交通大学出版社, 2000) p.152)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.