Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 614-620    DOI: 10.11901/1005.3093.2016.050
  本期目录 | 过刊浏览 |
大厚度TiAlN涂层力学性能的研究*
赵升升1, 梅海娟2, 程律莎1, 丁继成2, 王启民2
1. 深圳职业技术学院 深圳 518055
2. 广东工业大学 广州 510006
Study on Mechanical Property of TiAlN Coatings of Large Thickness
ZHAO Shengsheng1,**, MEI Haijuan2, CHENG Lvsha1, DING Jicheng2, WANG Qimin2
1. Shenzhen Polytechnic, Shenzhen 518055, China
2. Guangdong University of Technology, Guangzhou 510006, China
引用本文:

赵升升, 梅海娟, 程律莎, 丁继成, 王启民. 大厚度TiAlN涂层力学性能的研究*[J]. 材料研究学报, 2016, 30(8): 614-620.
Shengsheng ZHAO, Haijuan MEI, Lvsha CHENG, Jicheng DING, Qimin WANG. Study on Mechanical Property of TiAlN Coatings of Large Thickness[J]. Chinese Journal of Materials Research, 2016, 30(8): 614-620.

全文: PDF(5625 KB)   HTML
摘要: 

采用电弧离子镀技术在不锈钢基体上制备了大厚度TiAlN涂层, 并对大厚度涂层的力学性能进行了系统的研究。结果表明: 梯度增加和循环增加N2流量制备大厚度涂层的厚度分别达到68.79 μm和64.48 μm, 且涂层力学性能良好; 大厚度涂层残余应力沿层深的分布, 总体趋势从膜基界面向表面逐渐增大, 全膜厚平均压应力低于1 GPa, 表面硬度近2000 HV, 循环大厚度涂层的膜基结合好于梯度大厚度涂层, 而梯度大厚度涂层展现出更低的摩擦系数与磨损率。

关键词 材料表面与界面TiAlN电弧离子镀N2流量大厚度力学性能    
Abstract

The mechanical property of TiAlN coatings of large thickness deposited on stainless steel substrate by arc ion plating (AIP) was systematically investigated. The results indicated that the thickness of the coatings deposited by AIP with the increasing flow of N2 by way of cycle or stepwise could reach 68.79 μm and 64.48 μm respectively, and those coatings show fairly well mechanical performance. The depth profile of residual stress of the coatings presented a general trend that the stress increased gradually from the coating/substrate interface to the top surface. The average compressive stress of the coatings is lower than 1 GPa, and its surface hardness almost reaches 2000 HV. The former coating has lower friction coefficient and wear rate, whereas the later one shows better coating/substrate adhesion.

Key wordssurface and interface in the materials    TiAlN    arc ion plating    nitrogen flow    large thickness    mechanical properties
收稿日期: 2016-01-20     
基金资助:* 国家自然科学基金51401128和深圳市科技计划JCYJ20140508155916426资助项目
作者简介: 本文联系人: 赵升升
图1  大厚度涂层沉积时通入的N2流量随时间的变化
图2  梯度增加(a)和循环增加(b) N2流量时大厚度涂层的截面形貌
图3  梯度增加(a)和循环增加(b) N2流量时大厚度涂层成分的沿层深分布
图4  梯度增加和循环增加N2流量时大厚度涂层残余应力的沿层深分布
图5  梯度增加(a)和循环增加(b) N2流量时大厚度涂层截面硬度的沿层深分布
图6  梯度增加(a)和循环增加(b)N2流量时大厚度涂层的洛氏压痕形貌
图7  梯度增加(a)和循环增加(b) N2流量时大厚度涂层的划痕强度
图8  梯度增加和循环增加N2流量时大厚度涂层的摩擦系数
图9  大厚度涂层经过120 min摩擦实验后的表面形貌及成分分析
图10  大厚度涂层经过120 min摩擦实验后的磨痕轮廓
1 H. Ollendorf, D. Schneider, Th. Schwarz, G. Kirchhoff, A. Mucha, A comparative study of the mechanical properties of TiN coatings using the non-destructive surface acoustic wave method, scratch test and four-point bending test, Surface and Coatings Technology, 84(1-3), 458(1996)
doi: 10.1016/S0257-8972(96)02853-8
2 W. D. Munz, Titanium aluminum nitride films: A new alternative to TiN coatings, Journal of Vacuum Science and Technology, 4(6), 2717(1986)
doi: 10.1116/1.573713
3 W. L. Pan, G. P. Yu, J.H.Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surface and Coatings Technology, 110(1-2), 111(1998)
doi: 10.1016/S0257-8972(98)00680-X
4 J. Richter, Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels, Surface and Coatings Technology, 162, 119(2003)
doi: 10.1016/S0257-8972(02)00567-4
5 T. Ikeda, H. Satoh, Phase formation and characterization of hard coatings in the TiAlN system prepared by the cathodic arc ion plating method, Thin Solid Films, 195(1-2), 99(1991)
doi: 10.1016/0040-6090(91)90262-V
6 H. Ichimura, A. Kawana, High-temperature oxidation of ion-plated TiN and TiAlN films, Journal of Materials Research, 8(5), 1093(1993)
7 J. W. Woo, J. K. Lee, S. R. Lee, D. B. Lee, High-temperature oxidation of Ti0.3Al0.2N0.5thin films deposited on a steel substrate by ion plating, Oxidation of Metals, 53, 529(2000)
doi: 10.1023/A:1004685010393
8 S. Inoue, H. Uchida, Y. Yoshinga, K. Koterazawa, Oxidation behavior of (Ti1-xAlx)N films perpared by r.f. reactive sputtering, Thin Solid Films, 300(1-2), 171(1997)
doi: 10.1016/S0040-6090(96)09503-X
9 H. G. Prengel, A. T. Santhanam, R. M. Penich, P. C. Jindal, K. H. Wendt, Advanced PVD-TiAlN coatings on carbide and cermet cutting tools, Surface and Coatings Technology, 94, 597(1997)
doi: 10.1016/S0257-8972(97)00503-3
10 A. N. Kale, K. Ravindranath, D. C. Kothari, P. M. Raole, Tribological properties of (Ti, Al)N coatings deposited at different bias voltages using the cathodic arc technique, Surface and Coatings Technology, 145(1-3), 60(2001)
doi: 10.1016/S0257-8972(01)01296-8
11 I. J. Smith, D. Gillibrand, J. S. Brooks, W. D. Münz, S. Harvey, R. Goodwin, Dry cutting performance of HSS twist drills coated with improved TiAlN, Surface and Coatings Technology, 90, 164(1997)
doi: 10.1016/S0257-8972(96)03113-1
12 M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, (Ti, Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress, Thin Solid Films, 345(2), 263(1999)
doi: 10.1016/S0040-6090(98)01741-6
13 X. S. Wan, S. S. Zhao, Y. Yang, J. Gong, C. Sun, Effects of nitrogen pressure and pulse bias voltage on the properties of Cr-N coatings deposited by arc ion plating, Surface and Coatings Technology, 204(11), 1800(2010)
doi: 10.1016/j.surfcoat.2009.11.021
14 Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Influence of substrate bias voltage on the microstructure and residual stress of CrNfilms deposited by medium frequency magnetron sputtering, Materials Science and EngineeringB, 176(11), 850(2011)
doi: 10.2298/PAC1104215B
15 R. Manaila, A. Devenyi, D. Biro, L. David, P. B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology, 151, 21(2002)
doi: 10.1016/S0257-8972(01)01633-4
16 E. Vogli, W. Tillmann, U. Selvadurai-Lassl, G. Fischer, J. Herper, Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties, Applied Surface Science, 257, 8550(2011)
doi: 10.1016/j.apsusc.2011.05.013
17 ZHAO Shengsheng, CHENG Yu, CHANG Zhengkai, WANG Tiegang, SUN Chao, Modification of stress distribution along the thickness of (Ti, Al)N coatings and Preparation of the coatings with large thickness, ActaMetallurgicaSinica, 48(3), 277(2012)
17 (赵升升, 程毓, 常正凯, 王铁钢, 孙超, (Ti, Al)N涂层应力沿层深分布的调整及大厚度涂层的制备, 金属学报, 48(3), 277(2012))
doi: 10.3724/SP.J.1037.2011.00504
18 WU Ping, ZHOU Changchi, TANG Xinan, Preparation of wear-resistant graded metal-ceramic coating by laser-alloying, ActaMetallurgicaSinica, 30(11), 508(1994)
18 (吴萍, 周昌炽, 唐西南, 激光合金化熔覆制备耐磨陶瓷梯度涂层, 金属学报, 30(11), 508(1994))
doi: 10.1007/BF02943514
19 S. PalDey, S. C. Deevi, Properties of single layer and gradient (Ti, Al)N coatings, Materials Science Engineering, 361(1-2), 1(2003)
doi: 10.1016/S0921-5093(03)00473-8
20 J. H. Huang, C. H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surface and Coatings Technology, 201(6), 3199(2006)
doi: 10.1016/j.surfcoat.2005.09.005
21 K. L. Lin, W. H. Chao, C. D. Wu, The performance and degradation behaviours of the TiAln/interlayer coatings on drills, Surface and Coatings Technology, 89(3), 279(1997)
doi: 10.1016/S0257-8972(96)03015-0
22 D. Y. Wang, C. L. Chang, K. W. Wong, Y. W. Li, W. Y. Ho, Improvement of the interfacial integrity of (Ti, Al)N hard coatings deposited on high speed steel cutting tools, Surface and Coatings Technology, 120, 388(1999)
doi: 10.1016/S0257-8972(99)00452-1
23 H. M. Tung, J. H. Huang, D. G.Tsai, C. F. Ai, G. P. Yu, Hardness and residual stress in nanocrystallineZrN films: Effect of bias voltage and heat treatment, Materials Science and Engineering, 500(1-2), 104(2009)
doi: 10.1016/j.msea.2008.09.006
24 S. S. Zhao, H. Du, W. G. Hua, J. Gong, J. B. Li, C. Sun, The depth distribution of residual stresses in (Ti, Al)N films: Measurement and analysis, Journal of Materials Research, 22(10), 2659(2007)
doi: 10.1557/JMR.2007.0363
25 W. Heinke, A. Leyland, A. Matthews, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-c adhesion test, Thin Solid Films, 270, 431(1995)
doi: 10.1016/0040-6090(95)06934-8
26 S. S. Zhao, Y. Yang, J. B. Li, J. Gong, C. Sun, Effect of deposition processes on residual stress profiles along the thickness in (Ti, Al)N films, Surface and Coatings Technology, 202(21), 5185(2008)
doi: 10.1016/j.surfcoat.2008.06.048
27 S. S. Zhao, S. H. Zhou, H. Y. Yu, T. C. Kuang, D. C. Zeng, Effects of TiN Films Thickness on Mechanical Properties of Stainless Steel, Chinese Journal of Vacuum Science and Technology, 36(3), 291(2016)
27 (赵升升, 周晟昊, 余红雅, 匡同春, 曾德长, 厚度对TiN薄膜力学性能的影响, 真空科学与技术学报, 36(3), 291(2016))
doi: 10.13922/j.cnki.cjovst.2016.03.08
28 B. R. Lawn, M. V. Swain, Microfracture beneath point indentations in brittle solids, Journalof Materials Science, 10(1), 113(1975)
doi: 10.1007/BF00541038
29 C. B. Ponton, R. D. Rawlings, Vickers indentation fracture toughness test Part 2 Application and critical evaluation of standardised indentation toughness equations, Materials Scienceand Technology, 5(10), 961(1989)
30 Y. S. Hong, S. H. Kwon, T. G. Wang, D. I. Kim, J. Choi, K. H. Kim, Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating, Transaction of Nonferrous Metals Society of China, 21, s62(2011)
doi: 10.1016/S1003-6326(11)61062-5
31 SHAN Lei, CHEN Gang, CHEN Leping, CHEN Jian, On tribologicalproperties of PVD thick CrNcoating in seawater environment, Journal of Zhejiang Textile and Fashion College, 13(3), 85(2014)
31 (单磊, 陈罡, 陈乐平, 陈健, PVD大厚度CrN涂层海水环境摩擦学性能研究, 浙江纺织服装职业技术学院学报, 13(3), 85(2014))
doi: 10.3969/j.issn.1674-2346.2014.03.019
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[10] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[11] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[13] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[14] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[15] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.