Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 681-689    DOI: 10.11901/1005.3093.2015.625
  研究论文 本期目录 | 过刊浏览 |
随机植物短纤维复合材料界面性能对有效模量和拉伸行为的影响*
沈珉,孙晓翔,刘洋
天津大学机械工程学院 天津 300072
Influence of Interface Property on Effective Modulus and Tensile Behavior of Short Fiber Reinforced Composite
Min SHEN,Xiaoxiang SUN,Yang LIU
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
引用本文:

沈珉,孙晓翔,刘洋. 随机植物短纤维复合材料界面性能对有效模量和拉伸行为的影响*[J]. 材料研究学报, 2016, 30(9): 681-689.
Min SHEN, Xiaoxiang SUN, Yang LIU. Influence of Interface Property on Effective Modulus and Tensile Behavior of Short Fiber Reinforced Composite[J]. Chinese Journal of Materials Research, 2016, 30(9): 681-689.

全文: PDF(1822 KB)   HTML
摘要: 

研究了界面性能对随机短云杉纤维增强聚丙烯(PP)复合材料宏观拉伸性能的影响。采用双线性内聚力模型(CZM)描述随机短云杉纤维和PP基体间非理想界面的力学行为, 建立了含非理想界面的随机短纤维增强复合材料代表性单元(RVE)的二维有限元模型, 考虑了纤维含量、长细比、随机分布和随机各向异性弹性以及PP基体弹塑性的影响; 模拟了不同纤维含量复合材料的实验拉伸应力应变曲线。结果表明, 短云杉纤维/PP基体间非理想界面刚度与复合材料有效弹性模量之间有单调递增的曲线关系, 即E-K曲线; 同一复合材料不同纤维含量的E-K曲线簇有一个临界交点。在交点右侧强界面刚度区复合材料有效模量随着纤维含量的增加而提高, 在交点左侧弱界面刚度区有效模量随着纤维含量的增加而减少。三种不同体积含量10%、20%和49%的云杉/PP复合材料的非理想界面刚度可用E-K曲线和实验测得的宏观有效弹性模量确定, 云杉/PP界面初始破坏位移和界面完全破坏位移也可根据模拟拉伸应力应变曲线确定。数值分析结果能用非理想界面刚度来解释和理解随机短植物纤维体积含量对复合材料宏观有效模量的影响。

关键词 短植物纤维拉伸性能有限元纤维/基体界面有效弹性模量内聚力模型    
Abstract

The influence of interface performance on the macroscopic tensile properties for the random short spruce fibers reinforced polypropylene (PP) composite materials was investigated. The mechanical behavior of the imperfect interface between spruce fiber and PP matrix is described by the bilinear cohesive zone model (CZM), while a two-dimensional finite element model of the representative volume element (RVE) with CZM for the material was developed in terms of the volume content, aspect ratio (AR) and random anisotropic elastic of random distribution short spruce fiber, as well as the influence of elastic plastic PP matrix. Experimental tensile stress strain curves for the composites with different fiber volume contents were simulated. The results show that there exists a common trend of monotone increasing for the curves of imperfect interfacial stiffness versus the effective modulus, namely E-K curves. The E-K curves for the composites with different volume fraction of fibers converged to a unique critical point (CP). In the range of higher interface stiffness the effective modulus of composites increase with the increase of fiber volume content, in the range of lower interface stiffness that is the opposite. For three spruce/PP composites with different fiber contents of 10%, 20% and 49% (in volume fraction), their imperfect interfacial stiffness could be estimated by their E-K curves and the measured macroscopic effective elastic modulus through experiment. The displacement corresponding to the initial separation and that to the entire separation of the interface could also be determined by the simulating tensile experimental stress strain curve of spruce/PP. Therefore, the results of numerical analysis base on the imperfect interfacial stiffness can be used to explain and further understand the influence of random short fiber volume content on the effective modulus of spruce/PP composites.

Key wordsplant short fiber    tensile behavior    finite element analysis    fiber/matrix interface    effective modulus    cohesive zone model
    
基金资助:国家自然科学基金10972155, 11572218和81670884资助项目。
Properties Symbol Spruce fiber PP
E1 10991.0
E/ MPa E2 716.0 1573.0
E3 435.0
v 12 0.42
v v13 0.48 0.4
v 23 0.50
G12 724.0
G/ MPa G13 557.0
G23 31.6
表1  云杉纤维和PP基体的弹性模量
图1  云杉/PP复合材料的表面细观形貌和RVE模型的几何及边界条件
图2  cohesive单元双线性牵引-分离曲线
图3  网格密度对预测的宏观有效模量影响
图4  代表体RVE模型的网格划分
图5  云杉/PP复合材料的E-K曲线及各含量的实验值
Vf /% Eexp/MPa K/(MPa/mm) δ0/mm δf/mm
10 1341.4 2600 0.0220 0.93
20 1201.3 3960 0.0105 1.10
49 1432.2 25360 0.0016 0.80
表2  Cohesive参数及材料的有效弹性模量实验值
图6  Cohesive参数对材料应力应变曲线的影响
图7  应力应变曲线数值与实验结果
[1] Ku H, Wang H, Pattarachaiyakoop N, Trada M.A review on the tensile properties of natural fiber reinforced polymer composites, Composites Part B: Engineering, 42(4), 856(2011)
[2] Li Y, Luo Y.Mechanical properties and applications of natural fiber reinforced composites, Chinese Journal of Solid Mechanics, 31(6), 36(2010)
[2] (李岩, 罗业, 天然纤维增强复合材料力学性能及其应用, 固体力学学报, 31(6), 36(2010))
[3] Lam T.Q., F. Lagattu, J. Brillaud and J. Barbier, Influence of natural fibre reinforcement on microstructural and mechanical properties of polypropylene. ECCM11 congress in Greece, May, 2004
[4] Shen, M, Touchard, F, Bezine, G, Brillaud, J.Direct numerical simulation of fracture behaviour for random short wood fibre-reinforced composites in comparison with digital image correlation experiments. Journal of Thermoplastic Composite Materials, 28(5), 686(2015)
[5] Hoang T.Quynh Truong, Lagattu, F, Brillaud, J. Natural Fiber-Reinforced Recycled Polypropylene: Microstructural and Mechanical Properties, Journal of Reinforced Plastics and Composites. 29(2), 209(2010)
[6] Ren C, Chen J J, Pan H L.Prediction model for elastic modulus of random short fiber reinforced composite, Acta Materiae Compositae Sinica, 29(4), 191(2012)
[6] (任超, 陈建钧, 潘红良, 随机短纤维增强复合材料弹性模量预测模型, 复合材料学报, 29(4), 191(2012))
[7] Chen P, Yu Q, Lu C.Advance in the Study of Interface of Fiber Reinforced Polymer Matrix Composites, FIBER COMPOSITES, 53(1), 53(2005)
[7] (陈平, 于祺, 路春, 纤维增强聚合物基复合材料的界面研究进展, 纤维复合材料, 53(1), 53(2005))
[8] Sheng X M, Li Y B, Recent development of natural fiber reinforced polymer composite, New Chemical Materials, 40(10), 1(2012)
[8] (盛旭敏, 李又兵, 聚合物基天然植物纤维增强复合材料研究进展, 化工新型材料, 40(10), 1(2012))
[9] Hu R, Lim J-K.Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites,Journal of Composite Materials, 41(13), 1655(2007)
[10] Arib R, Sapuan S, Ahmad M, Paridah M, Zaman H.Mechanical properties of pineapple leaf fibre reinforced polypropylene composites, Materials & Design, 27(5), 391(2006)
[11] Hajnalka H R I, Anandjiwala R D, Development of HEMP fibre reinforced polypropylene composites, Thermoplast Compos Mater. 21, 165(2008)
[12] Ku H, Wang H, Pattarachaiyakoop N, Trada M.A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering. 42(4), 856(2011)
[13] Hashin Z, Shtrikman S, A variational approach to the theory of the elastic behaviour of multiphase materials.Journal of the Mechanics and Physics of Solids, 11(2), 127(1963)
[14] Chen W, Zhu X, Huang Z, Modeling of multi-inclusion composites with interfacial imperfections: Micromechanical and numerical simulations, Science China Technological Sciences, 53(3), 720(2010)
[15] Wang H, Zhou H, Peng R, Mishnaevsky Jr L.Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Composites Science and Technology, 71(7), 980(2011)
[16] Shen M, Xu R, Yuan HT.Numerical simulation of tensile behaviors for random spruce short fiber reinforced composites, Advanced Materials Research: Trans Tech Publ; p. 544(2012)
[17] Yu M, Zhu P, Ma Y, Experimental study and numerical prediction of the elastic properties of syntactic foams considering the interfacial effect, Acta Materiae Compositae Sinica, 30(3), 225(2013)
[17] (喻明, 朱平, 马颖琦, 考虑界面效应的复合泡沫塑料弹性性能数值仿真预测与试验研究, 复合材料学报, 30(3), 225(2013))
[18] Sreeranganathan A, Gokhale AM, Young P.Realistic micromechanical modeling of discontinuously reinforced composites, Computational Materials Science, 49(2), 407(2010)
[19] Shen M, Zhang X X, Sun X X, Experimental-numerical hybrid method for measurement of cohesive zone model parameters of short fiber composites in both macro and micro scale, Acta Materiae Composite Sinica, 32(1), 204(2015)
[19] (沈珉, 张晓旭, 孙晓翔, 短纤维复合材料宏微观内聚力模型参数测量的实验与数值混合法, 复合材料学报, 32(1), 204(2015))
[20] Shen M, Hao P, Theoretical estimation of imperfect interfacial stiffness and effective modulus in particle reinforced composites, Acta Materiae Composite Sinica, 33(1), 189(2016)
[20] (沈珉, 郝培, 颗粒增强复合材料非理想界面刚度和有效模量的理论估计, 复合材料学报, 33(1), 189(2016))
[21] K. Sobczyk, D. J. Kirkner, Stochastic modeling of microstructures, Modeling and Simulation in Science, Engineering and Technology, Birkh?user, (2001)
[22] Vaughan T, McCarthy C, Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites, Composites Science and Technology, 71(3), 388(2011)
[23] Guillebaud-Bonnafous C, Vasconcellos D, Touchard F, Chocinski-Arnault L, Experimental and numerical investigation of the interface between epoxy matrix and hemp yarn, Composites Part A: Applied Science and Manufacturing, 43(11), 2046(2012)
[1] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[2] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] 刘知多, 张浩宇, 程军, 周舸, 张兴君, 陈立佳. 热处理对Ti-6Mo-5V-3Al-2Fe-2Zr合金拉伸性能的影响[J]. 材料研究学报, 2022, 36(12): 919-925.
[4] 王圣元, 张浩宇, 周舸, 陈晓博, 陈立佳. 固溶温度对Ti-4Al-6Mo-2V-5Cr-2Zr钛合金的组织和拉伸性能的影响[J]. 材料研究学报, 2022, 36(12): 893-899.
[5] 王鹏宇, 张浩宇, 张志鹏, 孙杰, 谢广明, 程军, 陈立佳. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响[J]. 材料研究学报, 2020, 34(6): 473-480.
[6] 石从云,王金峰,陈红祥,杨旭萌,杜昌俊,李光要,刘鹏,蔡浩浩. 光棒废料改性环氧树脂复合材料的制备和性能[J]. 材料研究学报, 2020, 34(1): 57-63.
[7] 王志成,王浩,黄海亮,胡本芙. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响[J]. 材料研究学报, 2019, 33(5): 331-337.
[8] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[9] 郭瑞鹏, 张静, 徐磊, 雷家峰, 刘羽寅, 杨锐. Ti-5Al-2.5Sn ELI粉末合金的力学性能[J]. 材料研究学报, 2018, 32(5): 333-340.
[10] 王璇, 金涛, 王浩伟, 廖圣智, 杨怀玉. 脲醛树脂包覆聚硫密封剂微胶囊的制备和性能[J]. 材料研究学报, 2018, 32(10): 730-736.
[11] 刘晨, 杨理践, 张兴. 人工生物瓣膜血流动力学行为的有限元分析[J]. 材料研究学报, 2018, 32(1): 51-57.
[12] 胡晓娜, 段德莉, 刘俊, 李曙. 泡沫电热合金陶瓷涂层的制备及其高温氧化行为[J]. 材料研究学报, 2017, 31(8): 603-611.
[13] 徐玲, 国振兴, 张冬梅, 孙长青, 朱爽, 王炳达, 李玉秀, 崔传勇. 固溶温度对GH2787合金组织性能的影响[J]. 材料研究学报, 2017, 31(7): 517-525.
[14] 王雪萌,张思倩,袁子尧,陈立佳. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响[J]. 材料研究学报, 2017, 31(6): 409-414.
[15] 仝博,李永清,朱锡,张焱冰. 复合材料夹芯圆柱壳的声辐射性能[J]. 材料研究学报, 2017, 31(6): 458-464.