Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 473-480    DOI: 10.11901/1005.3093.2019.487
  研究论文 本期目录 | 过刊浏览 |
固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响
王鹏宇1, 张浩宇1(), 张志鹏1, 孙杰2, 谢广明2, 程军3, 陈立佳1
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
3.西北有色金属研究院 陕西省医用金属材料重点实验室 西安 710016
Effect of Solution Temperature on Microstructure and Tensile Properties of a Metastable β -Ti Alloy Ti-4Mo-6Cr-3Al-2Sn
WANG Pengyu1, ZHANG Haoyu1(), ZHANG Zhipeng1, SUN Jie2, XIE Guangming2, CHENG Jun3, CHEN Lijia1
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
3.Northwest Institute for Non-ferrous Metal Research, Shanxi Key Laboratory of Biomedical Metal Materials, Xi’an 710016, China
引用本文:

王鹏宇, 张浩宇, 张志鹏, 孙杰, 谢广明, 程军, 陈立佳. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响[J]. 材料研究学报, 2020, 34(6): 473-480.
Pengyu WANG, Haoyu ZHANG, Zhipeng ZHANG, Jie SUN, Guangming XIE, Jun CHENG, Lijia CHEN. Effect of Solution Temperature on Microstructure and Tensile Properties of a Metastable β -Ti Alloy Ti-4Mo-6Cr-3Al-2Sn[J]. Chinese Journal of Materials Research, 2020, 34(6): 473-480.

全文: PDF(4864 KB)   HTML
摘要: 

对自主设计的新型亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn(%,质量分数)在不同温度进行固溶和固溶时效处理,观察其显微组织和测试室温拉伸性能。结果表明:随着固溶温度的提高固溶态组织中的初生α相减少,当固溶温度高于相变点后初生α相完全消失,几乎全部为明显长大的粗大β晶粒。固溶温度为900℃的固溶态合金具有良好的强度和塑性匹配,屈服强度为898.7 MPa、抗拉强度为962.5 MPa、断裂伸长率为12.7%。在不同温度固溶处理的时效态合金,均析出了细小的次生α相。固溶温度低于相变点时,在初生α相间析出的细小次生α相呈60°或者平行交错排列;固溶温度高于相变点时初生α相几乎完全消失,随着固溶温度的提高析出的次生α相片层间距变大并粗化。在所有固溶温度下,时效态组织中沿原始β晶界处均析出了连续的晶界α相,合金的塑性均较差。经过750℃/0.5 h固溶和500℃/4 h时效的合金具有良好的强度和塑性匹配,其抗拉强度为1282 MPa,屈服强度为1210.6 MPa,断裂伸长率为5.3%。

关键词 金属材料亚稳β钛合金不同固溶温度室温拉伸性能次生α    
Abstract

Plates of a novel metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn (mass fraction,%) were solid solution treated at different temperatures for 0.5 h and subsequently aging treated at 400℃ for 4 h. Then the microstructure and room temperature tensile properties of the treated plates were examined by means of SEM, TEM and electronic universal testing machine. Results show that the primary α-phase decreases gradually with the increase of solution temperature. When the temperature rises above the phase transformation point the primary α-phase disappears completely, whilst almost all the plates present the microstructure of coarse β-grains, and the β-grains grow obviously. The 900℃ solution-treated plate presents good compromise in strength and plasticity with yield strength 898.7 MPa, tensile strength 962.5 MPa, and elongation at break 12.7%. Fine secondary α-phase precipitates occurred for the aged plates after solution treated at different temperatures. When the solution temperature is lower than the transformation point, the secondary α-phases are arranged in parallel or at a 60-degree inclination to the primary ones. When the solution temperature is higher than the phase transformation point, the primary α-phase almost disappeared, the precipitated secondary α-phase became coarser with larger spacing. Continuous chain of α-phases precipitated along the original β-grain boundaries in the aged plates, which were subjected to solution treatment in the temperature range 700~900℃, and the plasticity of the alloy is poor at the same time. After a combination solution and aging-treatment of 750℃/0.5 h plus 500℃/4 h, the alloy plate exhibits good compromise in strength and plasticity with tensile strength 1282 MPa, yield strength 1210.6 MPa, and the elongation at break 5.3%.

Key wordsmetallic materials    metastable β-Ti alloy    different solution temperatures    tensile properties at room temperature    secondary α-phase
收稿日期: 2019-10-18     
ZTFLH:  TG146.23  
基金资助:东北大学轧制技术及连轧自动化国家重点实验室开放课题(2018RALKFKT010);辽宁省自然科学基金指导计划(20180550998)
作者简介: 王鹏宇,男,1993年生,硕士
图1  热轧态合金的显微组织
图2  在不同温度固溶后合金的SEM组织
图3  在不同温度固溶后合金的拉伸性能
图4  不同固溶温度时效态Ti-4Mo-6Cr-3Al-2Sn合金的TEM像
图5  不同固溶温度下时效态合金的拉伸性能
图6  不同固溶温度下时效态合金晶界处的TEM组织
图7  在不同固溶温度下时效态合金的室温拉伸断口
[1] Fan X G, Zhang Y, Gao P F, et al. Deformation behavior and microstructure evolution during hot working of a coarse-grained Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy in beta phase field [J]. Mater. Sci. Eng. A, 2017, 694: 24
doi: 10.1016/j.msea.2017.03.095
[2] Qin Q H, Peng H B, Fan Q H, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
[3] Frutos E, Karlík M, Jiménez J A, et al. Development of new β/α″-Ti-Nb-Zr biocompatible coating with low Young's modulus and high toughness for medical applications [J]. Mater. Des., 2018, 142: 44
doi: 10.1016/j.matdes.2018.01.014
[4] Foul A, Aranas C Guo, et al. Dynamic transformation of αβ titanium at temperatures below the β-transus in commercially pure titanium [J]. Mater. Sci. Eng. A, 2018, 722: 156
doi: 10.1016/j.msea.2018.02.097
[5] Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
[5] (孙欢迎, 赵军, 刘翊安等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33(7): 537)
doi: 10.11901/1005.3093.2019.090
[6] Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile Properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
[6] (吴汐玥, 陈志勇, 程超等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33(10): 785)
doi: 10.11901/1005.3093.2019.110
[7] Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31(6): 409
doi: 10.11901/1005.3093.2016.267
[7] (王雪萌, 张思倩, 袁子尧等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31(6): 409)
doi: 10.11901/1005.3093.2016.267
[8] Wang X Y, Yang J R, Zhang K R, et al. Atomic-scale observations of B2→ω-related phases transition in high-Nb containing TiAl alloy [J]. Mater. Charact., 2017, 130: 135
doi: 10.1016/j.matchar.2017.06.003
[9] Wang K, Li M Q, Liu Q. Evolution mechanisms of the primary α and β phases during α/β deformation of an α/β titanium alloy TC8 [J]. Mater. Charact., 2016, 120: 115
doi: 10.1016/j.matchar.2016.08.028
[10] Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31(5): 352
doi: 10.11901/1005.3093.2016.621
[10] (王国强, 赵子博, 于冰冰等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J].材料研究学报, 2017, 31(5): 352)
doi: 10.11901/1005.3093.2016.621
[11] Sasaki L, Hénaff G, Arzaghi M, et al. Effect of long term aging on the fatigue crack propagation in the β titanium alloy Ti17 [J]. Mater. Sci. Eng. A, 2017, 707: 253
doi: 10.1016/j.msea.2017.09.052
[12] Shi Z F, Guo H Z, Han J Y, et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2882
doi: 10.1016/S1003-6326(13)62810-1
[13] Li C L, Hui S X, Ye W J, et al. Effect of solution temperature on microstructures and tensile properties of high strength Ti-6Cr-5Mo-5V-4Al alloy [J]. Mater. Sci. Eng. A, 2011, 578: 103
doi: 10.1016/j.msea.2013.04.063
[14] Yi R W, Liu H Q, Yi D Q, et al. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging [J]. Mater. Sci. Eng., 2016, 63C: 577
[15] Chen Q, Wang Q J, Wang D C, et al. Effect of solution temperature on microstructure and properties of new type metastable β titanium alloy [J]. Trans. Mater. Heat Treat., 2016, 37(8): 29
[15] (陈强, 王庆娟, 王鼎春等. 固溶温度对新型亚稳β钛合金组织与性能的影响 [J]. 材料热处理学报, 2016, 37(8): 29)
[16] Senopati G, Sutowo C, Kartika I, et al. The Effect of solution treatment on microstructure and mechanical properties of Ti-6Mo-6Nb-8Sn alloy [J]. Mater. Today: Proc., 2019, 13: 224
[17] Chen L L, Xun J M, Wen J Y, et al. Effect of solution temperature on microstructures and tensile properties of high strength Ti-6Cr-5Mo-5V-4Al alloy [J]. Mater. Sci. Eng. A, 2013, 578: 103
doi: 10.1016/j.msea.2013.04.063
[18] Wang T, Guo H Z, Wang Y W, et al. The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy [J]. Mater. Sci. Eng. A, 2011, 528(6): 2370
doi: 10.1016/j.msea.2010.12.044
[19] Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials, 2018, 11: 2283
doi: 10.3390/ma11112283
[20] Ahmed M, Savvakin D G, Ivasishin O M, et al. The effect of thermo-mechanical processing and ageing time on microstructure and mechanical properties of powder metallurgy near β titanium alloys [J]. J. Alloys Compd., 2017, 714: 610
doi: 10.1016/j.jallcom.2017.04.266
[21] Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57: 2136
doi: 10.1016/j.actamat.2009.01.007
[22] Huang C W, Zhao Y Q, Xin S W, et al. Effect of microstructure on high cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy [J]. Int. J. Fatigue, 2017, 94: 30
doi: 10.1016/j.ijfatigue.2016.09.005
[23] Huang C W, Zhao Y Q, Xin S W, et al. High cycle fatigue behavior of Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy with lamellar microstructure [J]. Mater. Sci. Eng. A, 2017, 682: 107
doi: 10.1016/j.msea.2016.11.014
[24] Zhou W, Ge P, Zhao Y Q, et al. Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment [J]. Rare Met. Mat. Eng., 2017, 46: 2852
[25] Song Z Y, Sun Q Y, Xiao L, et al. Precipitation behavior and tensile property of the stress-aged Ti-10Mo-8V-1Fe-3.5Al alloy [J]. Mater. Sci. Eng. A, 2011, 528: 4111
doi: 10.1016/j.msea.2011.01.110
[26] Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength [J]. Nat. Commun., 2016, 7: 11176
doi: 10.1038/ncomms11176 pmid: 27034109
[27] Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
[28] Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
[29] Li C, Zhang X Y, Li Z Y, et al. Effect of Heat Treatment on microstructure and mechanical properties of Ultra-fine grained Ti-55511 Near β titanium alloy [J]. Rare Met. Mat. Eng., 2015, 44: 327
[30] Ren L, Xiao W L, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment [J]. Mater. Sci. Eng. A, 2018, 711: 553
doi: 10.1016/j.msea.2017.11.029
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.