Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 690-696    DOI: 10.11901/1005.3093.2015.695
  研究论文 本期目录 | 过刊浏览 |
化学气相沉积C-TaC涂层的结构及其摩擦性能*
吕东泽,陈招科,熊翔,王雅雷,孙威,黎泽豪
中南大学 粉末冶金国家重点实验室 长沙 410083
Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition
Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI
State Key Laboratory of Powder &Metallurgy, Central South University, Changsha 410083, China
引用本文:

吕东泽,陈招科,熊翔,王雅雷,孙威,黎泽豪. 化学气相沉积C-TaC涂层的结构及其摩擦性能*[J]. 材料研究学报, 2016, 30(9): 690-696.
Dongze LV, Zhaoke CHEN, Xiang XIONG, Yalei WANG, Wei SUN, Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. Chinese Journal of Materials Research, 2016, 30(9): 690-696.

全文: PDF(3212 KB)   HTML
摘要: 

利用TaCl5-C3H6-Ar 反应体系, 用化学气相沉积法(CVD), 在高纯石墨表面制备了不同炭含量的C-TaC复相涂层。研究了室温条件下C-TaC复相涂层的摩擦学性能。采用扫描电镜、X射线衍射仪、X射线光电子能谱仪等对涂层的微观组织结构及摩擦表面形貌进行了分析。研究发现: Ta的加入促使热解炭中更多sp2杂化键的形成, 促进炭基涂层的石墨化。当炭含量为86.4%(质量分数)时, 涂层结构为热解炭与TaC晶粒相结合的纳米复相结构, 此时涂层的摩擦系数最低, 为0.13, 且摩擦曲线平稳, 磨损机制主要为磨粒磨损、黏着磨损和疲劳磨损。通过调节涂层中热解炭的含量以及晶粒大小可改善其摩擦学性能。

关键词 复合材料材料表面与界面C-TaC复相涂层化学气相沉积微观结构摩擦性能    
Abstract

C-TaC coatings with different C contents (in mass fraction) were deposited on pure graphite by chemical vapor deposition technique with a gas mixture of TaCl5-Ar-C3H6. The tribological properties of the as-prepared coatings were characterized by multifunctional tribometer. The microstructures of the coatings and then the morphologies of the friction surface were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that the addition of an appropriate amount of Ta to a pure carbon coating can increase the content of sp2 bonds in the carbon coatings, and can improve the degree of graphitization of the carbon based coatings. When the mass fraction of C in the coatings was 86.4%, the coating show a nano composite structure with the pyrolytic carbon matrix embedded with nanometersized TaC crystallites and among others, which shows the smallest friction coefficient of 0.13. The wear mechanism may mainly concern with adhesive wear, fatigue wear and abrasive wear. By controlling the carbon content and the size of the crystallites in the coating, the friction coefficient of the coating can be adjusted effectively.

Key wordscomposite materials    surface and interface in the materials    C-TaC composite coatings    chemical vapor deposition    microstructure    friction behavior
收稿日期: 2015-12-02     
基金资助:* 国家重点基础研究发展项目2011CB605805,湖南省科技计划项目2015WK3013和中南大学粉末冶金国家重点实验室项目资助
Deposition
temperature/℃
Deposition
pressure/Pa
Deposition time/h
950-1000 200 6
Deposition
position/mm
Volume flow rate/mLmin-1
Carrier gases Ar Dilute gases Ar C3H6
150-220 100-300 1200 600-1000
表1  CVD法制备 C-TaC涂层的工艺参数
FC3H6/sccm D/nm C
(%, mass fraction)
TaC
(%, mass fraction)
600 38.6 72.0 28.0
800 12.2 86.4 13.6
1000 9.8 93.8 6.2
表2  不同丙烯流量(FC3H6)下沉积涂层的成分以及通过Scherrer公式计算的TaC晶粒尺寸(D)
图1  TaC涂层(a)及炭含量分别为72.0%(b)、86.4%(c)和93.8%(d)时C-TaC涂层的横截面形貌SEM照片
图2  TaC涂层(a)及炭含量分别为72.0% (b)、86.4% (c)和93.8%(d)时C-TaC涂层的XRD图谱
图3  纯炭涂层及炭含量为86.4%的C-TaC复相涂层的C1s峰拟合
图4  不同涂层试样的摩擦系数
图5  TaC涂层、炭含量分别为72.0%, 86.4%, 93.8%的C-TaC涂层及热解炭涂层的摩擦表面形貌
[1] HUANG Boyun, XIONG Xiang, Manufacturing of Carbon/Carbon Composites for Aircraft Brakes (Changsha, Hunan Science and Technology Press, 2007) p.1
[1] (黄伯云, 熊翔, 高性能炭/炭航空制动材料的制备技术 (长沙, 湖南科学技术出版社, 2007) p.1)
[2] Nelson H. Forster, Lewis Rosado, Jeffrey R.Brown, Wei T. Shih, The development of carbon-carbon composite cages for rolling element bearings, Tribology Transactions, 45(1), 127(2002)
[3] Jeffrey R. Brown, Nelson H.Forster, Numerical investigation of the effect of carbon-carbon composite cages on high-speed bearing operating temperatures, 45(3), 411(2002)
[4] LIU Wen, Research on carbon-carbon composite cage, Doctoral Dissertation (Harbin, Harbin Institute of Technology, 2010)(刘闻, 碳碳复合材料保持架的研制, 博士学位论文(哈尔滨, 哈尔滨工业大学, 2010))
[5] Daniel Nilsson, Synthesis and evaluation of TaC: C low-friction coatings, Doctoral Dissertation, Uppsala University, (2004)
[6] Jansson Ulf, Lewin Erik, Sputter deposition of transition-metal carbide films-A critical review from a chemical perspective, Thin Solid Films, 536(6), 1(2013)
[7] Robertson J., Diamond-like amorphous carbon, Materials Science and Engineering R, 37(4-6), 129(2002)
[8] MA Fukang, QIU Xiangdong, JIA Housheng, LIU Guicai, Niobium and Tantalum (Changsha, Central South University Press, 1997) p.19(马福康, 邱向东, 贾厚生, 刘贵才, 铌与钽 (长沙, 中南大学出版社, 1997) p.19)
[9] WANG Qingliang, SUN Yanmin, ZHANG Lei, Tribological properties of diamond-like carbon films deposited by PECVD, Chinese Journal of Materials Research, 25(1), 73(2011)
[9] (王庆良, 孙彦敏, 张磊, PECVD法制备类金刚石薄膜的摩擦学性能, 材料研究学报, 25(1), 73(2011))
[10] K. Zhang, M. Wen, G. Cheng, X. Li, Q.N. Meng, J.S. Lian, W.T. Zheng, Reactive magnetron sputtering deposition and characterization of niobium carbide films, Vacuum, 99, 233(2014)
[11] DAI Mingjiang, FU Zhiqiang, LIN Songsheng, WANG Chengbiao, XIAO Xiaoling, Effect of frictional conditions on tribological performance of W-doped DLC films, Vacuum, 47(3), 1(2010)
[11] (代明江, 付志强, 林松盛, 王成彪, 肖晓玲, 摩擦条件对掺钨DLC膜摩擦磨损性能的影响, 真空, 47(3), 1(2010))
[12] ZHANG Wenyan, ZHANG Xuhai, FANG Feng, JIANG Jianqing, Microstructures and tribological properties of TiC/a-C films grown by magnetron sputtering, Chinese Journal of Vacuum Science and Technology, 29(3), 282(2008)
[12] (张文艳, 张旭海, 方峰, 蒋建清, 磁控溅射TiC/a-C薄膜的结构和摩擦学性能研究, 真空科学与技术学报, 29(3), 282(2008))
[13] K. Zhang, M. Wen, Q. N. Meng, Y. Zeng, C. Q. Hu, C. Liu, W. T. Zheng, Structure, mechanical property, and tribological behavior of c-NbN/CNx multilayers grown by magnetron sputtering, Surface and Coatings Technology, 206(19-20), 4040(2012)
[14] LI Yongqiu, Study on the deposition technology and the simulated experiment in spouted-bed at room-temperature, Master Thesis (Chengdu, Sichuan University, 2004)
[14] (李拥秋, 热解碳沉积工艺及冷态喷动模拟实验研究, 硕士学位论文(成都, 四川大学, 2004))
[15] LI Guodong, XIONG Xiang, HUANG Boyun, Effect of temperature on composition, surface morphology and microstructure of CVD-TaC coating, The Chinese Journal of Nonferrous Metals, 15(4), 565(2005)
[15] (李国栋, 熊翔, 黄伯云, 温度对CVD-TaC涂层组成、形貌与结构的影响, 中国有色金属学报, 15(4), 565(2005))
[16] D. L. Smith, Thin Film Deposition (New York, McGraw-Hill Inc., 1995) p.1
[17] E.O.Hall, The deformation and ageing of mild steel, Proceedings of the Physical Society, Section B, 64, 747(1951)
[18] J. Schiotz, F. D.Di Tolla, K. W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature, 391(6667), 561(1998)
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[4] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.