Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 458-464    DOI: 10.11901/1005.3093.2016.393
  本期目录 | 过刊浏览 |
复合材料夹芯圆柱壳的声辐射性能
仝博,李永清(),朱锡,张焱冰
海军工程大学舰船工程系 武汉 430033
Acoustic Radiation Performance of Composite and Sandwich Shells
Bo TONG,Yongqing LI(),Xi ZHU,Yanbing ZHANG
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
引用本文:

仝博,李永清,朱锡,张焱冰. 复合材料夹芯圆柱壳的声辐射性能[J]. 材料研究学报, 2017, 31(6): 458-464.
Bo TONG, Yongqing LI, Xi ZHU, Yanbing ZHANG. Acoustic Radiation Performance of Composite and Sandwich Shells[J]. Chinese Journal of Materials Research, 2017, 31(6): 458-464.

全文: PDF(2745 KB)   HTML
摘要: 

为了量化评估两种功能型材料的声振性能,基于结构有限元(FEM)法和声学边界元(BEM)法,计算出典型环肋圆柱壳的振动声辐射,结果与文献试验值的一致性较好。进行动态热力学实验并基于温频等效原理,得到了黏弹性吸声芯材的动态力学参数;采用流体有限元法模拟水和圆柱壳的耦合作用,最后采用间接边界元法计算了点激励作用下不同功能材料夹芯壳辐射声场。结果表明:周向模态对浮力材料夹芯壳和吸声材料夹芯壳模态阻尼比均有重要的影响,轴向模态仅对吸声材料的夹芯壳模态阻尼比有显著影响;与等质量的钢壳相比,浮体材料夹芯壳的最大声功率降低21.38 dB,吸声材料夹芯壳的最大声功率降低56.55 dB;将两种功能材料按比例组合作为夹芯材料,壳体的辐射声功率随着吸声材料占比的增加而降低,但是降低的幅度不断减小。

关键词 复合材料夹芯壳有限元边界元振动声辐射    
Abstract

In order to evaluate the acoustic-radiation performance of two functional materials, the vibro-acoustic radiation of a typical cylindrical shell with stiffened ring ribs is calculated based on FEM and BEM method, and the results agree well with the experimental results. According to the equivalent principle of temperature and frequency, the dynamic mechanical parameters of viscoelastic core material for acoustic absorption were acquired from the results of dynamic thermodynamic experiments. The coupling effect of water and the shell was simulated by finite element method. Finally, the acoustic radiation field of sandwich-shells with different core materials excited by a point source was calculated by means of indirect boundary method. The results show that the circumferential mode has an important influence on the modal damping ratio of both the sandwich shell with buoyancy core and sandwich shell with sound-absorption core, whilst axial mode just has a significant effect on the modal damping ratio of the sandwich shell with sound-absorption core. The peak value of the acoustic power of the sandwich shell with buoyancy core and sandwich shell with sound-absorption core is 21.38 dB and 56.55 dB lower than that of the steel shell respectively. When the combination of the above two functional materials in different proportion were used as the core material, the radiation acoustic power decreases with the increasing proportion of the sound-absorption material, but the decrease amount diminishes gradually.

Key wordscomposite    sandwich shell    finite element method    boundary element method    vibro-acoustic
收稿日期: 2016-07-08     
基金资助:国家部委基金(9140A14080914JB11044)
图1  温度对储能模量的影响示意图
图2  环肋圆柱壳剖视图
图3  圆柱形计算域
图4  声压指向性对比图
图5  夹芯壳结构
图6  复模量与损耗因子关系图
图7  模量和损耗因子随温度变化图
图8  主曲线图
图9  不同芯材夹芯壳模态阻尼比对比
图10  不同圆柱壳声功率对比
图11  不同芯材壳声功率对比
图12  不同组分芯材壳声功率对比
[1] Qu Y G, Meng G.Vibro-acoustic analysis of multilayered shells of revolution based on a general higher-order shear deformable zig-zag theory[J]. Comp. Struct., 2015, 134: 689
[2] Arunkumar M P, Jagadeesh M, Pitchaimani J, et al.Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: Effect of inherent material damping[J]. J. Sound Vibrat., 2016, 383: 221
[3] Yang T L, Huang Q B, Li S D.Three-dimensional elasticity solutions for sound radiation of functionally graded materials plates considering state space method[J]. Shock Vibrat., 2016, 2016: 1403856
[4] Arunkumar M P, Pitchaimani J, Gangadharan K V, et al.Effect of core topology on vibro-acoustic characteristics of truss core sandwich panels[J]. Proced. Eng., 2016, 144: 1397
[5] Xia Q Q, Chen Z J, Lin C Y.Vibration damping and noise reduction performance analysis of brace with elastic interlayer[J]. J. Huazhong Univ. Sci. Tech.(Nat. Sci. Ed.), 2014, 42(6): 52
[5] (夏齐强, 陈志坚, 林超友. 含黏弹性夹层托板的减振降噪性能分析[J]. 华中科技大学学报(自然科学版), 2014, 42(6): 52)
[6] Chen L Y, Zhang Y F.Structural-acoustic radiation optimization based on damping materials topological distribution[J]. Acta Mater. Compos. Sin., 2015, 32: 896
[6] (陈炉云, 张裕芳. 基于阻尼材料拓扑分布的结构-声辐射优化[J]. 复合材料学报, 2015, 32: 896)
[7] Qiu L, Jiang Z.Sound power minimization for a plate with visco-elastic damping based on theory of acoustic radiation modes[J]. J. Vibrat. Shock, 2011, 30: 40
[7] (邱亮, 姜哲. 基于声辐射模态的粘弹性阻尼板声功率最小化研究[J]. 振动与冲击, 2011, 30: 40)
[8] Rahmani O, Khalili S M R, Malekzadeh. Free vibration response of composite sandwich cylindrical shell with flexible core[J]. Comp. Struct., 2010, 92: 1269
[9] Everstine G C.Finite element formulatons of structural acoustics problems[J]. Comput. Struct., 1997, 65: 307
[10] Brebbia C A, Telles J C F, Wrobel L. Boundary Element Techniques: Theory and Applications in Engineering[M]. Berlin Herdelberg: Springer-Verlag, 1984.
[11] Guo M L.Dynamic Mechanical Thermal Analysis of Polymers and Composites[M]. Beijing: Chemical Industry Press, 2002.
[11] (过梅丽. 高聚物与复合材料的动态力学热分析 [M]. 北京: 化学工业出版社, 2002)
[12] Djojodihardjo H.Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation[J]. Acta Astronaut., 2015, 108: 129
[13] Chen L H, Schweikert D G.Sound radiation from an arbitrary body[J]. J. Acoust. Soc. Am., 1963, 35: 1626
[14] Yao L, Liu H W, Zhao H, et al.A hybrid measurement of low frequency acoustic properties of polymers method[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2008, 38: 546
[14] (姚磊, 刘宏伟, 赵洪等. 一种测量高分子材料低频声学性能的混合方法[J]. 中国科学G辑: 物理学力学天文学, 2008, 38: 546)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.