Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 393-400    DOI: 10.11901/1005.3093.2015.434
  本期目录 | 过刊浏览 |
功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究*
蔺海兰(), 申亚军, 王正君, 周醒, 王刚, 卞军
西华大学材料科学与工程学院 成都 610039
Preparation and Performance of Polypropylene Nano-composites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer
LIN Hailan**(), SHEN Yajun, WANG Zhengjun, ZHOU Xing, WANG Gang, BIAN Jun
College of Materials Science and Engineering, Xi-Hua University, Chengdu 610039, China
引用本文:

蔺海兰, 申亚军, 王正君, 周醒, 王刚, 卞军. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究*[J]. 材料研究学报, 2016, 30(5): 393-400.
Hailan LIN, Yajun SHEN, Zhengjun WANG, Xing ZHOU, Gang WANG, Jun BIAN. Preparation and Performance of Polypropylene Nano-composites Toughened-Reinforced Synergetically with Functionalized Graphene and Elastomer[J]. Chinese Journal of Materials Research, 2016, 30(5): 393-400.

全文: PDF(798 KB)   HTML
摘要: 

利用乙二胺功能化石墨烯(GS-EDA)为纳米填料, 马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)弹性体为增韧剂, 经熔融共混法制备了PP/POE-g-MAH/GS-EDA纳米复合材料。并采用红外光谱(FTIR)、扫描电子显微镜(SEM)、示差扫描量热仪(DSC)、热失重分析(TGA)、力学性能、热变形温度和熔融指数测试分别对填料和所得纳米复合材料的结构和性能进行了测试和表征。研究表明, EDA已成功接枝于石墨烯的表面上; POE-g-MAH的酐基与GS-EDA的氨基发生了作用改善了共混体系的界面相容性并促进了GS-EDA在PP基体中的分散性。当GS-EDA含量为0.5%(质量分数)时, 复合材料的拉伸强度、弹性模量和冲击强度分别较PP/POE-g-MAH提高了25.2%、32.5%和26.9%, 此时复合材料的综合力学性能也最好。添加GS-EDA提高了复合材料的结晶温度、熔融温度和结晶度。GS-EDA的加入使PP/POE-g-MAH/GS-EDA复合材料的热稳定性提高, 而熔融指数逐渐降低。

关键词 复合材料功能化石墨烯聚丙烯力学性能热性能    
Abstract

Using ethylenediamine functionalized graphene (GS-EDA) as nano-filler and maleic anhydride grafted polyolefin elastomer (POE-g-MAH) as toughening agent, the PP/POE-g-MAH/GS-EDA nanocomposites were prepared by melt blending method. The morphology and properties of nano-filler and the prepared nanocomposites were characterized in detail by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), differential scanning calorimetric analysis (DSC), thermogravimetric analysis (TGA), mechanical properties, thermal deformation temperature and melt flow rate tests. The results indicated that EDA was successfully grafted onto GS. The reactions between the GS-EDA and POE-g-MAH could improve effectively the interfacial compatibility of blending systems and the dispersion of GS-EDA in the matrix. The tensile strength, elastic modulus and impact strength of the nanocomposites with 0.5 mass% GS-EDA increased by 25.2%, 32.5% and 26.9% respectively in comparison with those of PP/POE-g-MAH without GS-EDA. The comprehensive mechanical performance could also be acquired for the PP/POE-g-MAH/GS-EDA nanocomposite with 0.5 mass% GS-EDA. The crystalline temperature, melting temperature and the degree of crystalline of the PP/POE-g-MAH/GS-EDA composites increased due to the GS-EDA incorporation. The thermal stability of all the PP/POE-g-MAH/GS-EDA composites is improved, while the melt flow rate decreased gradually, with the addition of GS-EDA.

Key wordscomposite    functionalized graphene    polypropylene    mechanical property    thermal property
收稿日期: 2015-08-01     
ZTFLH:  TQ325.1+4  
基金资助:* 国家级大学生创新创业训练计划项目201510623033, 特种材料及制备技术四川省高校重点实验室开放研究基金项目szjj2015-084, szjj2015-086和西华大学“西华杯”基金项目2015-XX资助
作者简介: 本文联系人: 蔺海兰
图1  GO和GS-EDA的红外光谱图
图2  NGP的氧化、接枝过程、以及POE-g-MAH与GS-EDA之间的作用机制
图3  不同GS-EDA质量分数的PP/POE-g-MAH/GS-EDA复合材料力学性能 (a)拉伸强度和扯断伸长率; (b)弹性模量和冲击强度
图4  不同GS-EDA质量分数的PP/POE-g-MAH/GS-EDA复合材料的冲击断面SEM像
图5  不同GS-EDA质量分数的PP/POE-g-MAH/GS-EDA纳米复合材料的拉伸断面SEM像
图6  纯PP、PP/POE-g-MAH和GS-EDA的质量分数分别为0.5%和1%时PP/POE-g-MAH/GS-EDA复合材料的DSC升温熔融曲线(a)和降温结晶曲线(b)
图7  纯PP、PP/POE-g-MAH和PP/POE-g-MAH/GS-EDA复合材料(GS-EDA的质量分数分别为0.5%和1%)的热失重曲线: (a)-TGA; (b)-DTA
图8  不同GS-EDA质量分数的PP/POE-g-MAH/GS-EDA复合材料的熔体流动速率
1 Wang Y, Zhang Q, Na B, Du R N, Fu Q, Shen K Z, Dependence of impact strength on the fracture propagation direction in dynamic packing injection molded PP/EPDM blends, Polymer, 44(15), 4261(2003)
2 Yoon L K, Choi C H, Kim B K, Reactive extrusion of PP/natural rubber blends, Journal of Applied Polymer Science, 56(2), 239(1995)
3 LIU Xiaohui, HUANG Ying, LI Yuzhong, Research on the mechanical property of different PP/EPDM blends, Plastics, 2, 30(1997)
3 (刘晓辉, 黄英, 李郁忠, 不同PP/EPDM共混物力学性能研究, 塑料, 2, 30(1997))
4 LI Huaxing, ZHANG Xiangcheng, Research on the SBS and LLDPE modified polypropylene powder, China Plastices, 3(3), 20(1989)
4 (郦华兴, 张祥成, SBS及LLDPE改性聚丙烯粉料的研究, 中国塑料, 3(3), 20(1989))
5 Gupta A K, Punwar S N, Dynamic mechanical and impact properties of PP/SEBS blend, Journal of Applied Polymer Science, 31(2), 535(1996)
6 LIU Yi, ZHANG Hongxia, SHAO Yuejun, Mechanical properties and compatibility of PP/LLDPE blends, Petrochemical Industry Application, (5), 10(2006)
6 (刘义, 张红霞, 邵月君, PP/LLDPE共混体系性能及相容性研究, 石油化工应用, (5), 10(2006))
7 YANG Qi, TIAN Yechun, MAO Yuming, Crystallization behavior and compatibility of PP/LLDPE blends, Polymer Materials Science and Engineering, 9(5), 155(2004)
7 (杨琪, 田野春, 毛益民, PP/LLDPE共混体系的相容性及结晶行为, 高分子材料科学与工程, 9(5), 155(2004))
8 Lehmann B, Friedrich K, Wu C L, Improvement of notch toughness of low nano-SiO2 filled polypropylene composites , Journal of Materials Science Letters, 22(14), 1027(2003)
doi: 10.1023/A:1024749627887
9 Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Friedrich K, Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism, Polymer, 42(7), 3301(2001)
10 Wu C L, Zhang M Q, Rong M Z, Friedrich K, Silica nano-particles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites, Composites Science and Technology, 65, 635(2005)
11 ZHOU Tonghui, RUAN Wenhong, WANG Yuelin, RONG Minzhi, ZHANG Mingqiu, Polypropylene composites with nano-silica modified by in-situ grafting polymerization I: structure characterization, Acta Materiae Composites Sinica, 23(2), 71(2006)
11 (周彤辉, 阮文红, 王跃林, 容敏智, 章明秋, 原位接枝改性纳米二氧化硅/聚丙烯复合材料I: 结构表征, 复合材料学报, 23(2), 71(2006))
12 Friedrich Klaus, RONG Minzhi, ZHANG Mingqiu, Microstructural analysis of nanosilica reinforced polypropylene composites , Acta Materiae Composites Sinica, 23(1), 44(2006)
12 (Friedrich Klaus, 容敏智, 章明秋, 纳米SiO2/聚丙烯复合材料的微观结构, 复合材料学报, 23(1), 44(2006))
13 Rong M Z, Zhang M Q, Pan S L, Interfacial effects in polypropylene-silica nanocomposites, Journal of Applied Polymer Science, 92(3), 1771(2004)
14 XU Weibing, GE Mingliang, HE Pingsheng, Preparation and property of polypropylene/montmorillonite nanocomposites, China Plastices, 14(11), 27(2000)
14 (徐卫兵, 戈明亮, 何平笙, 聚丙烯/蒙脱土纳米复合材料的制备与性能, 中国塑料, 14(11), 27(2000))
15 Geim A K, Novoselov K S, The rise of grapheme, Nat. Mater., 6(3), 183(2007)
16 Stankovich S, Dikin D A, Dommett G H B, Kohlhass K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S, Graphene-based composite materials, Nature, 442(7100), 282(2006)
17 Huang X, Qi X Y, Boey F, Zhang H, Graphene-based composites, Chem. So.c Rev., 41(2), 666(2012)
18 Kalaitzidou K, Fukushima H, Drzal L T, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets, Carbon, 45(7), 1446(2007)
doi: 10.1016/j.carbon.2007.03.029
19 Li Y F, Zhu J H, Wei S Y, Ryu J, Sun L Y, Guo Z H, Poly(Propylene)/graphene nanoplatelet nanocomposites: melt rheological behavior and thermal, electrical, and electronic properties, Macromolecular Chemistry and Physics, 212(18), 1951(2011)
doi: 10.1002/macp.201100263
20 Yun Y S, Bae Y H, Kim D H, Lee J Y, Chin I J, Jin H J, Reinforcing effects of adding alkylated graphene oxide to polypropylene, Carbon, 49(11), 3553(2011)
doi: 10.1016/j.carbon.2011.04.055
21 Hsiao M C, Liao S H, Lin Y F, Wang C A, Pu N W, Tsai H M, Ma C C M, Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite, Nanoscale, 3(4), 1516(2011)
22 QIU Feng, LI Xiaoyun, WANG Ming, Structure and property of polypropylene/modified graphene oxide composites, Proceedings of the National Symposium on polymer materials science and Engineering(Wuhan, 2012, the second volume)
22 (邱峰, 李筱芸, 王明, 聚丙烯/改性氧化石墨烯复合材料结构及性能研究, 全国高分子材料科学与工程研讨会学术论文集 (武汉, 2012, 下册))
23 YANG Feng, BIAN Jun, HE Feixiong, LIN Hailan, WANG Gang, ZHOU Qiang, LI Sisi, HU Wenmei, LU Yun, Preparation and properties of PP/PP-g-MAH/GS-EDA nanocomposites, Engineering Plastics Application, 42(9), 1(2014)
23 (杨峰, 卞军, 何飞雄, 蔺海兰, 王刚, 周强, 李丝丝, 胡文梅, 鲁云, PP/PP-g-MAH/GS-EDA 纳米复合材料的制备及性能, 工程塑料应用, 42(9), 1(2014))
24 HE Feixiong, BIAN Jun, LIN Hailan, YANG Feng, ZHOU Qiang, WANG Gang, Preparation and characterization of functionalized graphene sheet/PP-PP-g-MAH composites , Acta Materiae Composites Sinica, 32(1), 47(2015)
24 (何飞雄, 卞军, 蔺海兰, 杨峰, 周强, 王刚, 功能化纳米石墨烯片/PP-PP-g-MAH 复合材料的制备与表征, 复合材料学报, 32(1), 47(2015))
doi: 10.13801/j.cnki.fhclxb.20140410.001
25 LIU Yaqing, LU Menghai, XIAO Peng, Grafting of maleic anhydride on POE by reactive extrusion, Engineering Plastics Application, 29(10), 17(2001)
25 (刘亚庆, 吕孟海, 肖鹏, POE 与马来酸酐的反应挤出接枝, 工程塑应用, 29(10), 17(2001))
26 ZHU Jingyun, DU Jingqiang, ZHAO Heying, Study on properties of PP modified with POE, China Synthetic Resin and Plastics, 24(1), 14(2007)
26 (祝景云, 杜建强, 赵和英, POE改性PP的性能研究, 合成塑脂和塑料, 24(1), 14(2007))
27 Thongruang W, Spontak R J, Balik C M, Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber, Polymer, 43(8), 2279(2002)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.