Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 329-335    DOI: 10.11901/1005.3093.2015.334
  本期目录 | 过刊浏览 |
非金属弹丸高速撞击编织物填充式结构的损伤*
管公顺(), 李航杰, 刘家赫, 曾明
哈尔滨工业大学航天学院航天工程系 哈尔滨 150080
Investigation into Damage of Woven Stuffed Shield Impacted by High-Velocity Nonmetallic Projectile
GUAN Gongshun**(), LI Hangjie, LIU Jiahe, ZENG Ming
Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150080, China
引用本文:

管公顺, 李航杰, 刘家赫, 曾明. 非金属弹丸高速撞击编织物填充式结构的损伤*[J]. 材料研究学报, 2016, 30(5): 329-335.
Gongshun GUAN, Hangjie LI, Jiahe LIU, Ming ZENG. Investigation into Damage of Woven Stuffed Shield Impacted by High-Velocity Nonmetallic Projectile[J]. Chinese Journal of Materials Research, 2016, 30(5): 329-335.

全文: PDF(2490 KB)   HTML
摘要: 

对陶瓷球和尼龙球弹丸进行循环加热, 并使用二级轻气炮发射弹丸高速撞击编织物填充式结构。非金属弹丸循环加热的温度范围为20-150℃, 撞击速度为1.52-3.26 km/s, 撞击角度为0°, 得到编织物填充式结构在不同材料弹丸高速撞击下的损伤模式, 研究了循环加热对非金属弹丸高速撞击破碎特性和编织物填充式结构撞击损伤特性的影响。结果表明, 在弹丸尺寸和撞击动能分别相同的情况下, 用陶瓷球弹丸高速撞击薄铝板比用铝球弹丸产生的穿孔尺寸更小; 循环加热后的陶瓷和尼龙弹丸造成填充层更大尺寸的中心撞击穿孔; 循环加热后陶瓷球弹丸对编织物填充式结构后板的高速撞击破坏能力增强, 尼龙球弹丸对后板的高速撞击破坏能力减弱。

关键词 无机非金属材料非金属弹丸循环加热高速撞击编织物损伤    
Abstract

A two-stage light gas gun is used to launch nonmetallic projectiles, which were heated cyclically before launch, impacting on woven stuffed shield. The damage model of woven stuffed shield impacted by projectiles of different materials was acquired. The effect of cyclic heating of nonmetallic projectile on the fragmentation characteristics of the projectile and the damage of woven stuffed shield was investigated. The nonmetallic projectile was heated cyclically in a temperature range of 20-150℃. Impact velocities of projectile varied in a range of 1.52-3.26 km/s. The impact angle was 0°. The results indicate that the perforation diameter of thin Al-plate impacted by ceramic projectile is smaller than that by Al-sphere when the size of the two projectiles are the same. The cyclically heated projectiles of ceramic and nylon can cause larger center impact perforations of woven stuffed bumper. Furthermore, the cyclic heating could enhance the damage capability of ceramic projectile but weaken that of nylon projectile on woven stuffed shield.

Key wordsinorganic non-metallic materials    non metallic projectile    cyclic heating    high-velocity impact    woven bumper    damage
收稿日期: 2015-06-11     
ZTFLH:  V423.41O347  
基金资助:* 国家自然科学基金11172083资助项目
作者简介: 本文联系人: 管公顺, 教授
图1  实验中采用的填充式结构
No. Projectile Stuffed wall Velocity
/kms-1
Temperature
/℃
Materials Diameter
/mm
Processing times Materials Processing times
1 Ceramic 4 0 Al-mesh 5 3.26 20
2 Nylon 5.56 0 Al-mesh 5 3.09 20
3 Nylon 5.56 0 Basalt fiber cloth 5 3.13 20
4 Ceramic 4 0 Basalt fiber cloth 5 3.25 20
5 Ceramic 4 0 Al-mesh 5 1.69 20
6 Ceramic 4 0 Basalt fiber cloth 5 1.63 20
7 Nylon 5.56 0 Al-mesh 5 1.67 20
8 Nylon 5.56 0 Basalt fiber cloth 5 1.60 20
9 Ceramic 4 5 Al-mesh 5 3.01 20
10 Ceramic 4 5 Basalt fiber cloth 5 3.01 20
11 Ceramic 4 5 Basalt fiber cloth 5 1.69 20
12 Ceramic 4 5 Al-mesh 5 1.68 20
13 Nylon 5.56 5 Al-mesh 5 3.01 20
14 Nylon 5.56 5 Basalt fiber cloth 5 3.05 20
15 Nylon 5.56 5 Al-mesh 5 1.52 20
16 Nylon 5.56 5 Basalt fiber cloth 5 1.68 20
表1  非金属弹丸与填充层材料及实验状态
图2  陶瓷弹丸高速撞击填充式结构损伤结果
图3  尼龙弹丸高速撞击填充式结构损伤结果
图4  前板穿孔尺寸与撞击动能的关系
图5  陶瓷球弹丸高速撞击薄铝板穿孔直径与撞击速度的关系
图6  尼龙球弹丸高速撞击薄铝板穿孔直径与撞击速度的关系
图7  陶瓷球弹丸高速撞击时填充层损伤与撞击速度的关系
图8  尼龙球弹丸高速撞击时填充层损伤与撞击速度的关系
图9  陶瓷球弹丸高速撞击时后板损伤与撞击速度的关系
图10  尼龙球弹丸高速撞击时后板损伤与撞击速度的关系
1 TONG Jingyu, Spacecraft reliability and space special environment test, Spacecraft Environment Engineering, 22(1), 9(2005)
1 (童靖宇, 航天器可靠性与空间特殊环境试验, 航天器环境工程, 22(1), 9(2005))
2 JIANG Haiyun, WANG Jigang, DUAN Zhichao, LI Fan, Study on the microstructure evolution of phenol-formaldehyde resin modified by ceramic additive, Chinese Journal of Materials Research, 20(2), 203(2006)
2 (蒋海云, 王继刚, 段志超, 李凡, 碳化硼改性酚醛树脂的高温结构演变特性, 材料研究学报, 20(2), 203(2006))
3 SHEN Zicai, QIU Jiawen, DING Yigang, Space environment synergistic effect on spacecraft, Chinese Space Science and Technology, (5), 54(2012)
3 (沈自才, 邱家稳, 丁义刚, 航天器空间多因素环境协同效应研究, 空间科学技术, (5), 54(2012))
4 G. Lipika, K. Hiroshi, O. Nobuo, Degradation on a mechanical property of high-modulus aramid fiber due to hyperthennal atomic oxygen beam exposure, Composites Science and Technology, 67(7), 1611(2007)
5 J. H. Han, C. G. Kim, Low earth orbit space environment simulation and its effects on graphite/epoxy composites, Composite Structures, 72(2), 218(2006)
6 CAI Guangming, YU Weidong, Current status of research on flexible materials aging properties in space environment, Journal of Textile Research, 29(12), 131(2008)
6 (蔡光明, 于伟东, 空间环境下柔性材料的老化性能研究现状, 纺织学报, 29(12), 131(2008))
7 E. Grossman, I. Gouzman.Space environment effects on polymers in low earth orbit, Nuclear Instruments and Methods in Physics Research, 208(8), 48(2003)
8 CHEN Xiaowei, CHEN Yuze, Review on the penetration/perforation of ceramics targets, Advances In Mechanics, 36(1), 85(2006)
8 (陈小伟, 陈裕泽, 随性陶瓷靶高速侵彻/穿甲动力学的研究进展, 力学进展, 36(1), 85(2006))
9 GUAN Gongshun, WANG Shaoheng, CHEN Fangyuan.Compression failure and mechanics behavior of PMMA under different loading strain Rates, Journal of Aeronautical Materials, 32(6), 96(2012)
9 (管公顺, 王少恒, 成方圆, 不同加载应变率下有机玻璃的压缩破坏与力学行为, 航空材料学报, 32(6), 96(2012))
10 M. Higashide, M. Tanakab, Y. Akahoshi, Hypervelocity impact tests against metallic meshes, International Journal of Impact Engineering, 33(1-12), 335(2006)
11 P E Fahrenthold, Y K Park, Simulation of hypervelocity impact on aluminum-nextel-kevlar orbital debris shields, International Journal of Impact Engineering, 29(1-10), 227(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张敏, 张思倩, 王栋, 陈立佳. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响[J]. 材料研究学报, 2023, 37(6): 417-422.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度[J]. 材料研究学报, 2023, 37(1): 55-64.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.