Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (6): 445-452    DOI: 10.11901/1005.3093.2015.150
  本期目录 | 过刊浏览 |
粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究*
卢正冠,吴杰,徐磊(),卢斌,雷家峰,杨锐
中国科学院金属研究所 沈阳 110016
Comparative Study on Hot Workability of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy
Zhengguan LU,Jie WU,Lei XU(),Bin LU,Jiafeng LEI,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

卢正冠,吴杰,徐磊,卢斌,雷家峰,杨锐. 粉末Ti-22Al-24Nb-0.5Mo合金热变形能力的对比研究*[J]. 材料研究学报, 2015, 29(6): 445-452.
Zhengguan LU, Jie WU, Lei XU, Bin LU, Jiafeng LEI, Rui YANG. Comparative Study on Hot Workability of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloy[J]. Chinese Journal of Materials Research, 2015, 29(6): 445-452.

全文: PDF(2957 KB)   HTML
摘要: 

采用预合金粉末热等静压工艺制备名义成分为Ti-22Al-24Nb-0.5Mo(原子百分数)的粉末Ti2AlNb合金, 对粉末合金、经热处理的粉末合金和同种成分的熔铸Ti2AlNb合金进行了压缩实验。结果表明, 粉末Ti2AlNb合金具有与熔铸变形合金相当的变形能力, 热处理对粉末Ti2AlNb合金的变形能力没有明显的影响, 粉末合金在低温和高应变速率下的变形抗力更低, 不易开裂。采用典型粉末成型工艺制备粉末Ti2AlNb热变形坯料, 在两相区进行了不同变形量的墩粗和拔长热变形。结果表明, 粉末Ti2AlNb坯料变形后没有宏观裂纹, 变形均匀。拉伸实验结果表明, 变形后经热处理的粉末Ti2AlNb合金表现出更好的拉伸性能。

关键词 金属材料Ti2AlNb合金粉末冶金热等静压热机械加工    
Abstract

Powder metallurgy (PM) Ti2AlNb alloy of Ti-22Al-24Nb-0.5Mo (atomic fraction, %) was prepared from pre-alloyed powder using hot isostatic pressing (HIPing). Compression tests of PM Ti2AlNb alloy, heat treated PM Ti2AlNb alloy and wrought Ti2AlNb alloy with the same chemical composition were conducted on Gleeble-3800 testing machine. The testing temperatures were from 930oC to 1050oC, strain rates varied from 0.001 s-1 to 10 s-1, and engineering strain was about 50% for each compression. The results show that the deformability of PM Ti2AlNb alloy is comparable to that of wrought alloy, and heat treatment has no obvious effect on the hot workability of PM Ti2AlNb alloy. The high temperature flow behavior of Ti2AlNb alloys prepared by different fabrication routes is similar in this work, while processing windows for PM Ti2AlNb alloy is broader than casting alloys especially at low temperature or relative high strain rate. PM Ti2AlNb billets for hot deformation were prepared by a typical powder metallurgy process, and were upset or drawn out to different deformation in two-phase region. Macrostructure of deformed PM Ti2AlNb billets were observed, no macro crack was found in deformed PM Ti2AlNb billets and the deformation was uniform. The results of tensile tests show that the deformed PM Ti2AlNb alloy after heat treatment presents better tensile properties.

Key wordsmetallic materials    Ti2AlNb alloys    powder metallurgy    hot isostatic pressing    thermal mechanical processing
收稿日期: 2015-03-23     
基金资助:*国家高技术研究发展计划2013AA031606资助项目。
作者简介: 徐磊
Samples O N H Ar Al Nb Mo Ti
Powder 0.069 0.0080 0.0050 <0.0001 10.4 41.0 0.90 Bal.
PM alloy 0.068 0.014 0.0025 <0.0001 10.6 41.3 0.90 Bal.
表1  Ti2AlNb预合金粉末和合金坯料的化学成分
Items Preparation method
HIPed Hot isostatic pressing
HIPed+HT 980oC/2 h/AC+900oC/24 h/AC heat treatment after hot isostatic pressing
Wrought Forging in duplex phase field after casting
表2  三种Ti2AlNb合金及制备方法
图1  三种状态样品的显微组织
图2  έ=0.1 s-1下三种状态Ti2AlNb不同温度下的应力应变曲线
图3  在έ=0.1s-1, T=1005, 1030oC条件下三种状态Ti2AlNb合金的应力应变曲线比较
Temperature/ oC Type Strain rate/s-1
0.001 0.01 0.1 1 10
930 HIPed 143 248 363 562 580
HIPed+HT 168 248 338 345 591
Wrought 146 288 353 603 668
980 HIPed 60 168 212 255 396
HIPed+HT 71 131 176 258 387
Wrought 49 172 182 222 492
1005 HIPed 59 141 245 310 365
HIPed+HT 50 139 225 310 416
Wrought 54 149 251 337 388
1030 HIPed 46 90 102 147 325
HIPed+HT 38 106 127 215 226
Wrought 43 95 95 154 272
1050 HIPed 31 80 160 201 290
HIPed+HT 32 81 135 181 274
Wrought 31 103 153 223 283
表3  不同变形条件下三种状态Ti2AlNb的峰值应力
图4  在έ=0.1 s-1, T=830oC条件下三种状态Ti2AlNb合金样品压缩后的宏观形貌
图5  热等静压态和变形态Ti2AlNb合金的峰值应力和温度的关系
图6  热等静压态和变形态Ti2AlNb合金的应变速率和峰值应力的关系
Type HIPed HIPed+HT Wrought Wrought[4] HPed[19]
Q/kJmol-1 538.2 493.6 547.7 436.2 734.8
表4  几种不同状态Ti2AlNb合金的热激活能
1 D. Banerjee, A. K. Gogia, T. K. Nandy, V. A. Joshi,A new ordered orthorhombic phase in a Ti3Al-Nb alloy, Acta Metallurgica, 36(4), 871(1988)
2 FENG Aihan,LI Bobo, SHEN Jun, Recent advances on Ti2AlNb-based alloys, Journal of Materials and Metallurgy, 10(1), 34(2011)
2 (冯艾寒, 李渤渤, 沈 军, Ti2AlNb 基合金的研究进展, 材料与冶金学报, 10(1), 30(2011))
3 ZHANG Jianwei,LI Shiqiong, LIANG Xiaobo, CHENG Yunjun, Research and application of Ti3Al and Ti2AlNb based alloys, The Chinese Journal of Nonferrous Metals, 20(special 1), s338(2010)
3 (张建伟, 李世琼, 梁晓波, 程云君, Ti3Al 和Ti2AlNb 基合金的研究与应用, 中国有色金属学报, 20(special 1), s338(2010))
4 Ma X,Zeng W D, Xu B, Sun Y, Xue C, Han Y F, Characterization of the hot deformation behavior of a Ti-22Al-25Nb alloy using processing maps based on the Murty criterion, Intermetallics, 20, 1(2012)
5 Wang Y,Lu B, Yang R, Han X D, Ren P, Local deformation and processing maps of Ti-24Al-17Nb-0.5Mo alloy, Acta Metallurgica Sinca (English Letters), 25(2), 95(2012)
6 CHENG Jun,MAO Yong, YU Zhentao, NIU Jinlong, YU Sen, MA Xiqun, LIU Shaohui, NIU Hongzhi, Research on flow stress behavior and microstructure evolution during hot compression of Ti-22Al-14Nb-2Mo-1Fe alloy, Titanium, 31(3), 26(2014)
6 (程 军, 毛 勇, 于振涛, 牛金龙, 余 森, 麻西群, 刘少辉, 牛红志, Ti-25Al-14Nb-2Mo-1Fe 合金热压缩变形流变应力行为与微观组织演变的研究, 钛工业进展, 31(3), 26(2014))
7 ZENG Weidong,XU Bin, HE Dehua, LIANG Xiaobo, LI Shiqiong, ZHANG Jianwei, ZHOU Yigang, Hot deformation characteristics of Ti-22Al-25Nb alloy using processing maps, Rare Metal Materials and Engineering, 136(4), 592(2007)
7 (曾卫东, 徐 斌, 何德华, 梁晓波, 李世琼, 张建伟, 周义刚, 应用加工图理论研究 Ti2AlNb 基合金的高温变形特性, 稀有金属材料与工程, 136(4), 592(2007))
8 N. L. Loh, K. Y. Sia, An overview of hot isostatic pressing, Journal of Materials Processing Technology, 30, 45(1992)
9 Youngmoo Kim, Eun-Pyo Kim, Joon-Woong Noh, Sung Ho Lee, Young-Sam Kwon, In Seok Oh, Fabrication and mechanical properties of powder metallurgy tantalum prepared by hot isostatic pressing, International Journal of Refractory Metals and Hard Materials, 48, 211(2015)
10 WANG Gang,An investigation of the fabrication and high temperature deformation behavior of P/M TiAl alloys, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2011)
10 (王 刚, 粉末冶金TiAl 合金制备及高温变形行为研究, 博士学位论文, 中国科学院金属研究所(2011))
11 Gerhard Wegmann, Rainer Gerling, Frank-Peter Schimansky, Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders, Acta Materialia, 51, 741(2003)
12 Xu L, Guo R P, Bai C G, Lei J F, Yang R, Effect of hot isostatic pressing conditions and cooling rate on microstructure and properties of Ti-6Al-4V alloy from atomized powder, Journal of Materials Science and Technology, 30(12), 1289(2014)
13 Qi C,GH4169-type disk parts forging method, involves baiting GH4169-type bar prepared by cast condition or powder metallurgy process into primary bar ingot, and adding bar ingot into box type heating furnace of specific degrees centigrade, China, CN102764837- A(2013)
14 WU Jie,XU Lei, LU Bin, CUI Yuyou, YANG Rui, Preparation of Ti2AlNb alloy by powder metallurgy and its rupture lifetime, Chinese Journal of Materials Research, 28(5), 387(2014)
14 (吴 杰, 徐 磊, 卢 斌, 崔玉友, 杨 锐, 粉末冶金Ti2AlNb合金的制备及持久寿命, 材料研究学报, 28(5), 387(2014))
15 X. M Chen, Y. C. Lin, D. X. Wen, J. L. Zhang, M. He,Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation, Materials and Design, 57, 568(2014)
16 W. Q. Song, S. J. Sun, S.M. Zhu, G. Wang, J. Wang, M. S. Dargusch,Compressive deformation behavior of a near-beta titanium alloy, Materials and Design, 34, 739(2012)
17 Myoung-Gyu Lee, Sung-Joon Kim, Heung Nam Han, Woo Chang Jeong, Application of hot press forming process to manufacture an automotive part and its finite element analysis considering phase transformation plasticity, International Journal of Mechanical Sciences, 51, 888(2009)
18 LIU Yong, TANG Huiping, Powder Metallurgical Titanium Base Structural Materials, (Changsha, Central South University Press, 2010) p.296
18 (296)
19 Jia J B,Zhang K F, Liu L M, Wu F Y, Hot deformation behavior and processing map of a powder metallurgy Ti–22Al–25Nb alloy, Journal of Alloys and Compounds, 600, 215(2014)
20 J. W. Zhang, S. Q. Li, D. X. Zou, W. Q. Ma, Z. Y. Zhong,Processing and microstructure control of (a2+B2+O) alloy sheet in Ti-Al-Nb system, Intermetallics, 8, 699(2000)
21 SHEN Jun,FENG Aihan, Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys, Acta Metallurgica Sinca, 49(11), 1286(2013)
21 (沈 军, 冯艾寒, Ti2AlNb基合金微观组织调制及热成形研究进展, 金属学报, 49(11), 1286(2013))
22 SONG Tao,Thermal mechanical processing and mechanical properties of Ti2AlNb based alloy, Master thesis, Institute of Metal Research, Chinese Academy of Sciences (2014)
22 (宋 涛,Ti2AlNb合金成型工艺及力学性能研究, 硕士学位论文, 中国科学院金属研究所(2014))
23 LU Bin,Effects of alloying on the mechanical behaviors of Ti3Al based alloys, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (1999)
23 (卢 斌, 合金化对Ti3Al基合金力学性能的影响, 博士学位论文, 中国科学院金属研究所(1999))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.