Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 889-894    DOI: 10.11901/1005.3093.2015.12.889
  本期目录 | 过刊浏览 |
纳米晶双峰材料的本构行为*
刘英光(),琚荣源,李慧君,赵光艺
华北电力大学能源动力与机械工程学院 保定 071003
Constitutive Behavior of Bimodal Nanocrystalline Materials
Yingguang LIU(),Rongyuan JU,Huijun LI,Guangyi ZHAO
School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
引用本文:

刘英光,琚荣源,李慧君,赵光艺. 纳米晶双峰材料的本构行为*[J]. 材料研究学报, 2015, 29(12): 889-894.
Yingguang LIU, Rongyuan JU, Huijun LI, Guangyi ZHAO. Constitutive Behavior of Bimodal Nanocrystalline Materials[J]. Chinese Journal of Materials Research, 2015, 29(12): 889-894.

全文: PDF(1610 KB)   HTML
摘要: 

由微米级粗晶颗粒和纳米级纳晶颗粒组成的纳米晶双峰材料不仅具有高强度, 还具有较高的延性。根据Taylor强度理论和Johnson-Cook模型提出纳米晶双峰材料的一个新的本构模型, 研究了晶粒尺寸和纳米裂纹对纳晶双峰材料本构及失效行为的影响, 并进行了数值计算。结果表明, 模型预测的结果与实验结果有很好的一致性。由计算结果可知:在纳晶双峰材料中, 纳晶基体能提供高强度, 粗晶能有效提高材料延性; 纳米裂纹的存在不会导致破坏, 反而对应变硬化起积极作用。

关键词 金属材料本构行为纳米晶双峰材料Taylor强度理论Johnson-Cook模型    
Abstract

Bimodal nanocrystalline (BNC) materials composed of coarse grains (CG) and nanocrystalline grains (NG), have both high strength and good ductility. In this paper, a new constitutive model was proposed by using Taylor strength theory and the Johnson-Cook modelto analyze the effect of grain size and nano-cracks on the constitutive/failure behavior of BNC materials. Numerical calculations have been carried out according to the model. It was found that the prediction result is in good agreement with experimental data. It can be concluded from the calculations that in BNC materials, (1) NC matrix can provide high strength, whereas CG can induce strain hardening to enhance its ductility, (2) the existence of nano-cracks does not lead to materials failure but a positive effect on strain hardening.

Key wordsmetal materials    constitutive behavior    bimodal nanocrystalline materials    Taylor strength theory    Johnson-Cook model
收稿日期: 2015-05-12     
基金资助:* 国家自然科学基金51301069, 河北省自然科学基金E2014502073和中央高校基本科研业务费2014MS114资助项目
图1  双峰晶粒尺寸分布的示意图
图2  双峰结构中纳米裂纹的示意图
图3  临界应力强度因子KIC和位错发射方向与裂纹扩展方向的夹角之间的关系
图4  从裂纹尖端发射沿着一个滑移面滑移的最大位错数目N*与晶粒尺寸d的关系
α bCu/nm bAg/nm μCu/GPa μAg/GPa k20 n ρ0/m-2 ε˙0 M ψ γs(J?m-2) a0
0.2-0.5 0.256 0.29 48 30 18.5 12.5 0.5 1 s-1 1.732 0.2 1.58 dG2
表1  模型中出现的参数符号以及数值
图5  不同纳晶基体晶粒尺寸的双峰铜银材料的应力应变计算结果
图6  不同粗晶含量的双峰铜银材料的应力应变计算结果
图7  背应力对纳晶双峰铜银材料的塑性变形的影响
图8  高温高压烧结得到的试样的XRD图
图9  纳晶双峰铜银材料的SEM像
图10  理论预测的结果与实验结果之间的对比
1 M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci., 51, 427(2006)
2 C. C. Koch, D. G. Morris, K. Lu, A. Lnoue, Ductility of nanostructured materials, MRS Bull., 24, 54(1999)
3 G. He, J. Eckert, W. Loser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity, Nat. Mater., 2, 33(2002)
4 M. Dao, L. Lu, R. J. Asaro, J. T. M. D. Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., 55, 4041(2007)
5 Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, 419, 912(2002)
6 X. X. Shen, J. S. Lian, Z. H. Jiang, Q. Jiang, High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution, Mater. Sci. Eng., A, 487, 410(2008)
7 G. J. Fan, H. Choo, P. K. Liaw, E. J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution, Acta Mater., 54, 1759(2006)
8 B. Q. Han, E. J. Lavernia, F. A. Mohamed, Mechanical properties of nanostructured materials, Rev Adv Mater Sci, 9, 1(2005)
9 B. Q. Han, J. Y. Huang, Y. T. Zhu, E. J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater., 54, 3015(2006)
10 B. Q. Han, E. J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A, 36, 957(2005)
11 I. A. Ovid’ko, A. G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials, Acta Mater., 58, 5286(2010)
12 L. L. Zhu, S. Q. Shi, K. Lu, J. Lu, A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution, Acta Mater., 60, 5762(2012)
13 L. L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plast., 30, 166(2012)
14 Y. G. Liu, J. Q. Zhou, D. Hui, A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure, Composites Part B, 43, 249(2012)
15 V. L. Tellkamp, A. Melmed, E. J. Lavernia, Mechanical Behavior and Microstructure of a Thermally Stable Bulk Nanostructured Al Alloy, Metall. Mater. Trans. A, 32, 2335(2001)
16 S. Billard, J. P. Fondere, B. Bacroix, G. F. Dirras, Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing, Acta Mater., 54, 411(2006)
17 U. F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 171(2003)
18 L. Capolungo, C. Jochum, M. Cherkaoui, J. Qu, Homogenization method for strength and inelastic behavior of nanocrystalline materials, Int. J. Plast., 21, 67(2005)
19 Y. G. Liu, J. Q. Zhou, L. Wang, S. Zhang, Y. Wang, Grain size dependent fracture toughness of nanocrystalline materials, Mater. Sci. Eng. A, 528, 4615(2011)
20 Y. G. Liu, J. Q. Zhou, T. D. Shen, Effect of nano-metal particles on the fracture toughness of metal-ceramic composite, Mater. Des., 45, 67(2013)
21 J. Trajkovski, R. Kunc, V. Pepel, I. Prebil, Flow and fracture behavior of high-strength armor steel PROTAC 500, Mater. Des., 66, 37(2015)
22 D. N. Zhang, Q. Q. Shangguan, C. J. Xie, F. Liu, A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy, J. Alloys Compd., 619, 186(2015)
23 H. Y. Zhan, G. Wang, D. Kent, M. Dargusch, Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models, Mater. Sci. Eng., A, 612, 71(2014)
24 J. Frontan, Y. M. Zhang, M. Dao, J. Lu, F. Galvez, A. Jerusalem, Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel, Acta Mater., 60, 1353(2012)
25 J. Q. Zhou, R. T. Zhu, Z. Z. Zhang, A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range, Mater. Sci. Eng. A, 480, 419(2008)
26 X. Guo, R. Ji, G. J. Weng, L. L. Zhu, J. Lu, Micromechanical simulation of fracture behavior of bimodal nanostructured metals, Mater. Sci. Eng. A, 618, 479(2014)
27 R. T. Zou, D. W. He, X. K. Wei, R. C. Yu, T. C. Lu, X. H. Chang, S. M. Wang, L. Lei, Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure, Mater. Chem. Phys., 123, 529(2010)
28 H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., Wiley, New York(1974), p. 625
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.