|
|
纳米晶双峰材料的本构行为* |
刘英光( ),琚荣源,李慧君,赵光艺 |
华北电力大学能源动力与机械工程学院 保定 071003 |
|
Constitutive Behavior of Bimodal Nanocrystalline Materials |
Yingguang LIU( ),Rongyuan JU,Huijun LI,Guangyi ZHAO |
School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China |
引用本文:
刘英光,琚荣源,李慧君,赵光艺. 纳米晶双峰材料的本构行为*[J]. 材料研究学报, 2015, 29(12): 889-894.
Yingguang LIU,
Rongyuan JU,
Huijun LI,
Guangyi ZHAO.
Constitutive Behavior of Bimodal Nanocrystalline Materials[J]. Chinese Journal of Materials Research, 2015, 29(12): 889-894.
1 | M. A. Meyers, A. Mishra, D. J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater Sci., 51, 427(2006) | 2 | C. C. Koch, D. G. Morris, K. Lu, A. Lnoue, Ductility of nanostructured materials, MRS Bull., 24, 54(1999) | 3 | G. He, J. Eckert, W. Loser, L. Schultz, Novel Ti-base nanostructure-dendrite composite with enhanced plasticity, Nat. Mater., 2, 33(2002) | 4 | M. Dao, L. Lu, R. J. Asaro, J. T. M. D. Hosson, E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater., 55, 4041(2007) | 5 | Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature, 419, 912(2002) | 6 | X. X. Shen, J. S. Lian, Z. H. Jiang, Q. Jiang, High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution, Mater. Sci. Eng., A, 487, 410(2008) | 7 | G. J. Fan, H. Choo, P. K. Liaw, E. J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al-Mg alloys with a bimodal grain size distribution, Acta Mater., 54, 1759(2006) | 8 | B. Q. Han, E. J. Lavernia, F. A. Mohamed, Mechanical properties of nanostructured materials, Rev Adv Mater Sci, 9, 1(2005) | 9 | B. Q. Han, J. Y. Huang, Y. T. Zhu, E. J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater., 54, 3015(2006) | 10 | B. Q. Han, E. J. Lavernia, Z. Lee, S. Nutt, D. Witkin, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A, 36, 957(2005) | 11 | I. A. Ovid’ko, A. G. Sheinerman, Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials, Acta Mater., 58, 5286(2010) | 12 | L. L. Zhu, S. Q. Shi, K. Lu, J. Lu, A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution, Acta Mater., 60, 5762(2012) | 13 | L. L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int. J. Plast., 30, 166(2012) | 14 | Y. G. Liu, J. Q. Zhou, D. Hui, A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure, Composites Part B, 43, 249(2012) | 15 | V. L. Tellkamp, A. Melmed, E. J. Lavernia, Mechanical Behavior and Microstructure of a Thermally Stable Bulk Nanostructured Al Alloy, Metall. Mater. Trans. A, 32, 2335(2001) | 16 | S. Billard, J. P. Fondere, B. Bacroix, G. F. Dirras, Macroscopic and microscopic aspects of the deformation and fracture mechanisms of ultrafine-grained aluminum processed by hot isostatic pressing, Acta Mater., 54, 411(2006) | 17 | U. F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 171(2003) | 18 | L. Capolungo, C. Jochum, M. Cherkaoui, J. Qu, Homogenization method for strength and inelastic behavior of nanocrystalline materials, Int. J. Plast., 21, 67(2005) | 19 | Y. G. Liu, J. Q. Zhou, L. Wang, S. Zhang, Y. Wang, Grain size dependent fracture toughness of nanocrystalline materials, Mater. Sci. Eng. A, 528, 4615(2011) | 20 | Y. G. Liu, J. Q. Zhou, T. D. Shen, Effect of nano-metal particles on the fracture toughness of metal-ceramic composite, Mater. Des., 45, 67(2013) | 21 | J. Trajkovski, R. Kunc, V. Pepel, I. Prebil, Flow and fracture behavior of high-strength armor steel PROTAC 500, Mater. Des., 66, 37(2015) | 22 | D. N. Zhang, Q. Q. Shangguan, C. J. Xie, F. Liu, A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy, J. Alloys Compd., 619, 186(2015) | 23 | H. Y. Zhan, G. Wang, D. Kent, M. Dargusch, Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models, Mater. Sci. Eng., A, 612, 71(2014) | 24 | J. Frontan, Y. M. Zhang, M. Dao, J. Lu, F. Galvez, A. Jerusalem, Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel, Acta Mater., 60, 1353(2012) | 25 | J. Q. Zhou, R. T. Zhu, Z. Z. Zhang, A constitutive model for the mechanical behaviors of bcc and fcc nanocrystalline metals over a wide strain rate range, Mater. Sci. Eng. A, 480, 419(2008) | 26 | X. Guo, R. Ji, G. J. Weng, L. L. Zhu, J. Lu, Micromechanical simulation of fracture behavior of bimodal nanostructured metals, Mater. Sci. Eng. A, 618, 479(2014) | 27 | R. T. Zou, D. W. He, X. K. Wei, R. C. Yu, T. C. Lu, X. H. Chang, S. M. Wang, L. Lei, Nanosintering mechanism of MgAl2O4 transparent ceramics under high pressure, Mater. Chem. Phys., 123, 529(2010) | 28 | H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., Wiley, New York(1974), p. 625 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|