Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 881-888    DOI: 10.11901/1005.3093.2015.12.881
  本期目录 | 过刊浏览 |
碳化物抑制剂对WC-2.5TiC-10Co超细晶硬质合金微观组织及力学性能的影响*
王文广1,2(),张贺佳3,王全兆2,马宗义2,陈礼清3
1. 辽宁石油化工大学机械工程学院 抚顺 113001
2. 中国科学院金属研究所 沈阳 110016
3. 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effects of Carbide Inhibitor on Microstructures and Mechanical Properties of Ultrafine Grained Carbide Cement WC-2.5TiC-10Co
Wenguang WANG1,2,**(),Hejia ZHANG3,Quanzhao WANG2,Zongyi MA2,Liqing CHEN3
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

王文广,张贺佳,王全兆,马宗义,陈礼清. 碳化物抑制剂对WC-2.5TiC-10Co超细晶硬质合金微观组织及力学性能的影响*[J]. 材料研究学报, 2015, 29(12): 881-888.
Wenguang WANG, Hejia ZHANG, Quanzhao WANG, Zongyi MA, Liqing CHEN. Effects of Carbide Inhibitor on Microstructures and Mechanical Properties of Ultrafine Grained Carbide Cement WC-2.5TiC-10Co[J]. Chinese Journal of Materials Research, 2015, 29(12): 881-888.

全文: PDF(8490 KB)   HTML
摘要: 

采用高能球磨和真空热压烧结相结合的方法制备了WC-2.5TiC-10Co超细晶硬质合金, 并利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)等性能测试手段研究了Cr3C2、VC、TaC和NbC的添加对超细晶硬质合金微观组织和力学性能的影响。结果表明: 经过球料比10∶1及转速为350 r/min行星式高能球磨处理30 h后, WC粉末的粒径由0.6 μm减小到0.2 μm以下; 经过1410℃真空热压烧结1 h后, XRD检测未发现新的反应物生成。添加0.45% Cr3C2、0.3 % VC、0.5 % TaC或NbC的硬质合金中有少量异常长大的WC晶粒, 断口表面疏松且平坦, 分析表明较大的WC晶粒在应力集中的作用下发生解理破坏, 并成为材料断裂的裂纹源。当抑制剂Cr3C2和VC的含量再增加0.1%后, WC晶粒可以控制在0.5 μm以下, 断口表面致密成台阶状, 抗弯强度可提高20%; TaC和NbC对抑制WC晶粒生长的作用并不显著, 但添加NbC对提高硬质合金致密度的效果最显著。

关键词 金属材料粉末冶金超细晶硬质合金微观结构力学性能抑制剂    
Abstract

By using high energy ball-milling and vacuum hot-pressed sintering techniques, ultrafine grained carbide cement WC-2.5TiC-10Co were prepared, and the effect of grain growth inhibitors Cr3C2, VC, TaC and NbC on microstructures and mechanical properties were studied by X-ray diffractometer, field emission scanning electron microscope (FESEM) and mechanical performance test. The results indicates that the particle size of the WC powder can be reduced to less than 0.2 μm from 0.6 μm after 30 h of high energy ball-milling at a rotation speed of 350 r/min and ball/powder ratio of 10: 1. After vacuum hot-pressed sintering at 1410℃ for 1h, no new reactive product formed revealed by XRD. When 0.45 %Cr3C2, 0.3 %VC, 0.5 %TaC or NbC were added to the carbide cement, a small quantity of abnormally coarsened WC grains occurred, while the fractured surfaces display loose and smooth. Analyzing the fractured surfaces indicate that cleavage cracking in coarsened WC grains was caused by concentrated stress and become the source of materials fracture. When the contents of inhibitors Cr3C2 and VC were both more increased 0.1%, the grain size of WC can be reduced less than 0.5 μm. In such a case, the fractured surfaces are intimate and step-like, while the bending strength can be increased by 20%. Inhibitors TaC and NbC have not pronounced effect on the preventing the WC grain growth, while the addition of NbC is most effective in improving the relative density of the carbide cement.

Key wordsmetallic materials    powder metallurgy    ultrafine grained carbide cement    microstructure    mechanical properties    inhibitor
收稿日期: 2015-01-15     
基金资助:* 中国工业与信息化部科技重大专项课题2012ZX04003061资助项目
Sample WC TiC Co TaC NbC Cr3C2 VC
1 bal. 2.5 10 0.5 - 0.45 0.3
2 bal. 2.5 10 0.5 - 0.55 0.4
3 bal. 2.5 10 - 0.5 0.45 0.3
4 bal. 2.5 10 - 0.5 0.55 0.4
表1  硬质合金的成分(质量分数, %)
图1  WC-2.5TiC-10Co复合粉末的SEM照片
图2  球磨30 h后, WC-2.5TiC-10Co复合粉末的(a) FESEM像及其(b) WC-Co、(c) WC-TiC-Co的EDS图谱
Sample Measured
density (g/cm3)
Relative
densities (%)
1 13.577 98.93
2 13.584 99.37
3 13.610 99.50
4 13.612 99.91
表2  WC-2.5TiC-10Co超细晶硬质合金的实测密度及其致密度
图3  WC-2.5TiC-10Co超细晶硬质合金的性能
图4  WC-2.5TiC-10Co超细晶硬质合金的X射线衍射图谱
图5  WC-2.5TiC-10Co超细晶硬质合金的FESEM像
图6  WC-2.5TiC-10Co超细晶硬质合金的三点弯曲断口的低倍SEM像
图7  WC-2.5TiC-10Co超细晶硬质合金三点弯曲断口的高倍FESEM像
1 G. S. Upadhyaya, Materials science of cemented carbides-an overview, Mater. Des., 22(6), 483(2001)
2 Ji Xiong, Zhixing Guo, Mei Yang, Weicai Wan, Guangbiao Dong, Tool life and wear of WC-TiC-Co ultrafine cemented carbide during dry cutting of AISI H13 steel, Ceram. Int., 39, 337(2013)
3 Dilek Duman, Hasan Gokce and Huseyin Cimenoglu, Synthesis, microstructure, and mechanical properties of WC-TiC-Co ceramic composites, J. Eur. Ceram. Soc., 32, 1427(2012)
4 Jianxin Deng, Yousheng Li, Wenlong Song, Diffusion wear in dry cutting of Ti-6Al-4V with WC-Co carbide tools, Wear, 265, 1776(2008)
5 Shan Quan, Li Zulai, Jiang Yehua, Zhou Rong, Sui Yudong, Chen Zhihui, Effect of Co Addition on Microstructure of Matrix in Tungsten Carbide Surface Reinforced Composite, Chinese J. Mater. Res., 26(5), 551(2012)
6 Lu Shanping, Guo Yi, The Effect of Brazing Parameters on The Properties of WC-Co/NiCrBSi Composite Coating, Chinese J. Mater. Res., 13(2), 188(1999)
7 ZHANG Zhi, DENG Gang, HOU Xianneng, The application of WC-base hard alloy to rolling equipment, Powder Metall. Technol., 14(3), 35(2004)
7 (张智, 邓钢, 侯先能, WC基硬质合金在轧钢机中的应用, 粉末冶金工业, 14(3), 35(2004))
8 Nobom Gretta Hashe, Johannes H. Neethling, Pearl R.Berndt, Hans-Olof Andren, Susanne Norgren, A comparison of the microstructures of WC-VC-TiC-Co and WC-VC-Co cemented carbides, Int. J. Refract. Met. Hard Mater., 25, 207(2007)
9 Berger S, Porat R, Rosen R., Nanocrystalline materials: a study of WC-based hard metals, Prog. Mater. Sci., 42, 311(1997)
10 Victor G.Zavodinsky, Ab intio study of inhibitors influence on growth of WC crystallites in WC/Co hard alloys, Int. Journal of Refractory Metals and Hard Materials, 31, 263-265(2012)
11 ZHANG Shouquan, Sintering behavior of ultra-fine grain cemented carbides with 0.2 μm sized grain, Mater. Sci. Eng. Powder Metall., 14(4), 237(2009)
11 (张守全, 0.2微米级超细晶硬质合金的烧结行为, 粉末冶金材料科学与工程, 14(4), 237(2009))
12 T. Kagnaya, C. Boher, L. Lambert, M. Lazard, T. Cutard, Microstructural analysis of wear micromechanisms of WC-6Co cutting tools during high speed dry machining, Int. J. Refract. Met. Hard Mater., 42, 151(2014)
13 H. A.Abdel-Aal, M. Nouari, M. El Mansori, Tribo-energetic correlation of tool thermal properties to wear of WC-Co inserts in high speed dry machining of aeronautical grade titanium alloys, Wear, 266, 432(2009)
14 Z. N. Farhat, Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel, Mater. Charact., 51, 117(2003)
15 ZHANG Chongcai, YANG Wei, Influence of TaC on the performance of high titanium submicron W-Ti-Co cemented carbide, Powder Metall. Technol., 32(1), 14(2014)
15 (张崇才, 杨伟, TaC对高钛亚微米钨钛钴硬质合金性能的影响, 粉末冶金技术, 32(1), 14(2014))
16 Jonathan Weidow, Hans-Olof Andrén, Grain and phase boundary segregation in WC-Co with TiC, ZrC, NbC or TaC additions, Int. J. Refract. Met. Hard Mater., 29, 38(2011)
17 Shiwei Huang, Ji Xiong, Zhixing Guo, Weicai Wan, Limei Tang, Hua Zhong, Wei Zhou, Bitong Wang, Oxidation of WC-TiC-TaC-Co hard materials at relatively low temperature, Int. J. Refract. Met. Hard Mater., 48, 134(2015)
18 M. Mmahmoodan, H. Allakbarzadeh, R. Gholamipour, Sintering of WC-10%Co nano powders containing TaC and VC grain growth inhibitors, Trans.Nonferrous Met. Soc. China, 21, 1080(2011)
19 Farid Akhtar, Islam S. Humail, S.J. Askari, Jianjun Tian,Guo Shiju, Effect of WC particle size on the microstructure, mechanical properties and fracture behavior of WC-(W, Ti, Ta)C-6 wt%Co cemented carbides, Int. J. Refract. Met. Hard Mater., 25, 405(2007)
20 Kyong H. Lee, Seung I. Cha, Byung K. Kim, Soon H.Hong, Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides, Int. J. Refract. Met. Hard Mater., 24, 109(2006)
21 Byung-Kwon Yoon, Bo-Ah Lee, Suk-Joong L.Kang, Growth behavior of rounded (Ti, W)C and faceted WC grains in a Co matrix during liquid phase sintering, Acta Materialia, 53, 4677(2005)
22 Nobom G. Hashe, Johannes H.Neethling, Hans-Olof Andren, Susanne Norgren, Pearl R. Berndt, The influence of sintering in nitrogen gas on the microstructure of a WC-VC-TiC-Co cemented carbide, Int. J. Refract. Met. Hard Mater., 26, 404(2008)
23 FU Xiancai, SHEN Wenxia, YAO Tianyang, HOU Wenhua, Physical Chemistry, 5th edition (Beijing, Higher Education Press, 2005) P.235
23 (傅献彩, 沈文霞, 姚天杨, 侯文华, 物理化学(上册), 第五版, (北京, 高等教育出版社, 2005) P.235)
24 T. Yamamoto, Y. Ikuhara, T. Sakuma, High resolution transmission electron microscopy study in VC-doped WC-Co compound, Sci. Technol. Adv. Mater., 1, 97(2000)
25 S. Lay, S. Hamar-Thibault, A. Lackner, Location of VC in VC, Cr3C2 codoped WC—Co cermets by HREM and EELs, Int. J. Refract. Met. Hard Mater., 20, 61(2002)
26 C. W. Morton, D. J. Wills, K. Stjernnberg, The temperature ranges of maximum effectiveness of grain growth inhibitors in WC alloy, Int. J. Refract. Met. Hard Mater., 23, 287(2005)
27 A. Petersson, J. Agren, Sintering shrinkage of WC-Co materials with bimodal grain size distributions, Acta Mater., 53, 1665(2005)
28 Guoqiang Li, Yi Zhao, SuSeng Pang, Analytical modeling of particle size and cluster effects on particulate-filled composite, Mater. Sci. Eng., A271, 43(1999)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.