Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 583-588    DOI: 10.11901/1005.3093.2015.005
  本期目录 | 过刊浏览 |
碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响
庞志鹏1,孙晓刚1,2(),程晓圆1,吴小勇1,付琦1
1. 南昌大学机电工程学院 南昌 330031
2. 南昌大学(宜春)锂电及新能源汽车研究院 南昌 330031
Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials
Zhipeng PANG1,Xiaogang SUN1,2,**(),Xiaoyuan CHENG1,Xiaoyong WU1,Qi FU1
1. School of Mechantronics Engineering, Nanchang University, Nanchang, 330031, China
2. Institute of lithium Energy, Nanchang 330031, China
引用本文:

庞志鹏,孙晓刚,程晓圆,吴小勇,付琦. 碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响[J]. 材料研究学报, 2015, 29(8): 583-588.
Zhipeng PANG, Xiaogang SUN, Xiaoyuan CHENG, Xiaoyong WU, Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials[J]. Chinese Journal of Materials Research, 2015, 29(8): 583-588.

全文: PDF(3873 KB)   HTML
摘要: 

以石墨化处理的碳纳米管为导电填料、纤维素纤维为基体, 用真空抽滤法制备碳纳米管-纤维素纤维复合材料, 用扫描电子显微镜、四探针电阻仪、矢量网络分析仪等手段对其进行了表征, 研究了碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响。结果表明, 样品的形状和电阻可控, 具有良好的柔韧性、导电性能和电磁屏蔽性能。碳纳米管吸附于纤维上, 构成了良好的导电网络。在碳纳米管加载量由10%提高到71%的过程中, 碳纳米管复合纸的电导率和屏蔽性能明显提高, 电导率由9.92 S/m提高为216.3 S/m, 在175 MHz-1600 MHz频段屏蔽效能由15dB提高为45dB。

关键词 复合材料碳纳米管电磁屏蔽柔性纤维素纤维导电纸    
Abstract

Composite sheets of carbon nanotubes-cellulose fibers were made by suction filtration method with cellulose fibers as matrix and graphitized CNTs as electroconductive agent. The products were characterized by scanning electron microscopy, shielding effectiveness, four-point probes, and while the effect of carbon nanotube content on the EMI shielding performance of the prepared composite sheets was investigated. The results show that the shape and conductivity is controllable for the composite sheets, which then exhibits good flexibility, electrical conductivity and EMI shielding effectiveness. CNTs were adsorbed on the cellulose fibers and formed a continuously interconnected conductive network. With the increasing amount of CNTs from 10% to 71%, the conductivity of the composite sheets increased from 9.92 S/m to 216.3S/m and correspondingly their EMI shielding effectiveness increased from 15dB to 45dB in the frequency range 175 MHz-1600 MHz.

Key wordscomposite materials    CNTs    EMI shielding    flexible    cellulose fibers    conductive sheets
收稿日期: 2015-01-05     
基金资助:* 江西省教育厅KJLD13006和江西省科技厅科研项目2012ZBBE50012&20142BBE50071资助。
Sample Mass of cellulose fibers (g) Mass of CNTs (g) Content of CNTs
1# 1 0.11 10%
2# 1 0.25 20%
3# 1 0.5 33%
4# 1 1 50%
5# 1 1.5 60%
6# 1 2 66%
7# 1 2.5 71%
表1  碳纳米管纸制作方案
图1  碳纳米管的SEM图、未石墨化碳纳米管HRTEM图以及石墨化碳纳米管HRTEM图
图2  碳纳米管石墨化前后XRD图谱
图3  碳纳米管纸可弯曲并可代替导线点亮LED灯
图4  不同倍率下碳纳米管-纤维素复合材料截面SEM图
图5  不同碳纳米管加载量碳纳米管纸的表面SEM图
Sample Mass (g) Content of CNTs Thickness (mm) Surface resistivity (Ω/sq) Conductivity (S/m)
1# 1.11 10% 0.28 360.2 9.92
2# 1.25 20% 0.44 106.3 18.51
3# 1.5 33% 0.52 25.6 62.5
4# 2 50% 0.64 7.5 133.3
5# 2.5 60% 0.95 4.4 204.9
6# 3 66% 1.38 3.5 213.2
7# 3.5 71% 2.22 2.1 216.3
表2  不同碳纳米管加载量的碳纳米管纸的物理参数表征
图6  碳纳米管加载量对试样电磁屏蔽效能的影响
图7  碳纳米管对碳纳米管纸电导率和在1500MHz电磁屏蔽效能的影响
1 S. Iijima,Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
2 R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes?(Vol. 4), London: Imperial college press (1998)
3 M. R. Falvo, G. J. Clary, R. M Taylor, V. Chi, F. P. Brooks, S. Washburn,R, Superfine. Bending and buckling of carbon nanotubes under large strain, Nature, 389(6651), 582(1997)
4 T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio,Electrical conductivity of individual carbon nanotubes, Nature, 382(6586), 54(1996)
5 Y. Saito, S. Uemura,Field emission from carbon nanotubes and its application to electron sources, Carbon, 38(2), 169(2000)
6 R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jascinski, S. Roth, M. Kertesz,Carbon nanotube actuators, Science, 284(5418), 1340(1999)
7 R. H. Baughman, A. A. Zakhidov, W. A.de Heer,Carbon nanotubes--the route toward applications, Science, 297(5582), 787(2002)
8 Z. K. Tang, L. Zhang, N. Wang, X. X Zhang, G. H. Wen, G. D. Li, J. N. Wang, C. T. Chan, P. Sheng,Superconductivity in 4 angstrom single-walled carbon nanotubes, Science, 292(5526), (2001)
9 Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, Y. Chen,The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites, Carbon, 45(8), 1614(2007)
10 P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, S. K. Dhawan,Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding, Materials Chemistry and Physics, 113(2), 919(2009)
11 C. Xiang, Y. Pan, J. Guo,Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites, Ceramics International, 33(7), 1293(2007)
12 S. M. Yuen, C. C. Ma, M. C. Y. Chuang, K. C. Yu, S. Y. Wu, C. C. Yang, M. H. Wei,Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites, Composites Science and Technology, 68(3), 963(2008)
13 A. Gupta, V. Choudhary,Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites, Composites Science and Technology, 71(13), 1563(2011)
14 ZHAO Yan,DUAN Yuexin , LI Weiwei , LIANG Zhenfang, Radar absorbing property in eight millimetre wave of MWXNTs/ CF/ epoxy composites, Acta Materiae Compositae Sinica, 24(3), 23(2007)
14 (肇 研, 段跃新, 李蔚慰, 梁振方, 多壁碳纳米管复合材料在8 mm波段的吸波性能, 复合材料学报, 24(3), 23(2007))
15 R. Che, L. M. Peng, X. F. Duan, Q. Chen, X. L. Liang,Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Advanced Materials, 16(5), 401(2004)
16 SUN Xiaogang,Effect of carbon nanotube content on the radar absorbing properties of carbon nanotube/resin composites, New Carbon Materials, 22(4), 375(2008)
16 (孙晓刚, 碳纳米管加载量对复合材料吸波性能的影响, 新型炭材料, 22(4), 375(2008))
17 J. H. Johnston, J. Moraes, T. Borrmann,Conducting polymers on paper fibres, Synthetic metals, 153(1), 65(2005)
18 R. E .Anderson, J. Guan, M. Ricard, G. Dubey, J. Su, G. Lopinski, G. Dorris, O. Bourne, B. Simard,Multifunctional single-walled carbon nanotube-cellulose composite paper, Journal of Materials Chemistry, 20(12), 2400(2010)
19 S. H. Yoon, H. J. Jin, M. C. Kook, Y. R. Pyun,Electrically conductive bacterial cellulose by incorporation of carbon nanotubes, Biomacromolecules, 7(4), 1280(2006)
20 T. Oya, T. Ogino,Production of electrically conductive paper by adding carbon nanotubes, Carbon, 46(1), 169(2008)
21 B. Fugetsu, E. Sano, M .Sunada, Y. Sambongi, T. Shibuya, X. Wang, T. Hiraki,Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper, Carbon, 46(9), 12562008)
22 M. Imai, K. Akiyama, T. Tanaka, E. Sano,Highly strong and conductive carbon nanotube/cellulose composite paper, Composites Science and Technology, 70(10), 1564(2010)
23 P. Moilanen, M. Luukkainen, J. Jekkonen, V. Kangas,EMI shielding effects of carbon nanotube cellulose nanocomposite, InElectromagnetic Compatibility (EMC), 2010 IEEE International Symposium on?(pp. 198-201), IEEE(2010, July)
24 H. Dai, E. W. Wong, C. M. Lieber,Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science, 272(5261), 523(1996)
25 C. C. M. Ma, Y. L. Huang, H. C. Kuan, Y. S. Chiu,Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites, Journal of Polymer Science Part B: Polymer Physics, 43(4), 345(2005)
26 D. D. L. Chung,Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39(2), 279(2001)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.