Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (6): 401-409    DOI: 10.11901/1005.3093.2014.401
  本期目录 | 过刊浏览 |
锻造态316LN不锈钢在高温高压水中的短期氧化行为*
郭跃岭1,2,韩恩厚2,1(),王俭秋2
1. 北京科技大学国家材料服役安全科学中心 北京 100083
2. 中国科学院核用材料与安全评价重点实验室 中国科学院金属研究所 沈阳 110016
Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water
Yueling GUO1,2,En-Hou HAN2,1,**(),Jianqiu WANG2
1. National Center for Materials Service Safety, University of Science and Technology Beijing,
Beijing 100083, China
2. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

郭跃岭,韩恩厚,王俭秋. 锻造态316LN不锈钢在高温高压水中的短期氧化行为*[J]. 材料研究学报, 2015, 29(6): 401-409.
Yueling GUO, En-Hou HAN, Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. Chinese Journal of Materials Research, 2015, 29(6): 401-409.

全文: PDF(5563 KB)   HTML
摘要: 

用电子背散射衍射技术(EBSD)研究了锻造以及锻后固溶处理处理对核级316LN奥氏体不锈钢 (316LNss) 的晶粒尺寸、残余应变和晶粒取向分布的影响, 并分析了原始态(即未锻造态)和锻造且固溶处理态316LNss在核电高温高压水中短期氧化 (190 h) 后表面氧化膜的形貌和成分。结果表明, 锻造和锻后的固溶处理能减小晶粒尺寸和降低残余应变, 同时消除了原始态316LNss内部的织构。在高温高压水中316LNss表面生成的氧化膜具有双层特征, 外层氧化膜由氢氧化物和富Fe尖晶石结构氧化物组成, 内层氧化膜主要由富Cr尖晶石结构氧化物组成; 与原始态316LNss相比, 锻造且固溶处理态316LNss的氧化膜较薄且Cr含量较高, 氧化速率较小。最后讨论了316LNss在高温高压水中的氧化机理。

关键词 材料失效与保护316LN不锈钢氧化膜高温高压水锻造腐蚀核电    
Abstract

Effect of forging on the average grain size, residue strain and grain orientation distribution of nuclear grade 316LN stainless steel (316LNss) was studied by means of electron back scattering diffraction (EBSD). The morphology and chemical composition of the oxide films formed on the as-received 316LNss as well as the forged and solution annealed 316LNss after immersion in borated and lithiated high temperature pressurized water at 300 oC for 190 h were also investigated. The results show that the average grain size was reduced and the residual strain was eliminated by forging and followed solution annealing. There were no obvious textures in the forged and solution annealed 316LNss. A two-layered oxide film grew on 316LNss after immersion in high temperature pressurized water. The outer layer composes of hydroxides and Fe-enriched spinal oxides and the inner layer composes of Cr-enriched spinal oxides. The forged and solution annealed 316LNss exhibited a lower oxidation rate rather than the as received ones due to the formation of a thinner and more Cr-enriched oxide film. The oxidation mechanism was also discussed.

Key wordsmaterial failure and protection    316LN stainless steel    oxide film    high temperature pressurized water    forging    corrosion    nuclear power
收稿日期: 2014-08-11     
基金资助:*国家科技重大专项课题2011ZX06004-009资助项目。
作者简介: 韩恩厚, 研究员
C Cr Ni Mo N Mn Si Cu S P Fe
0.010 17.07 12.87 2.21 0.12 1.35 0.26 0.06 0.003 0.023 Bal
表1  316LNss的化学成分
Element Detailed XPS spectra(± 0.2 eV)
Fe 2p2/3 Peak Fe0 Fe2+ Fe3+
EB/eV 707.0 709.3 711
Ni 2p2/3 Peak Ni0 Ni(II) Ni(OH)2 Ni0Sat Ni(II)Sat
EB/eV 852.6 854.9 856.1 858.5 861.6
Cr 2p2/3 Peak Cr(III) CrOOH Cr0
EB/eV 576.6 577.4 574.1
O 1s Peak O2- OH-
EB/eV 530.3 531.5
表2  XPS峰谱所对应的标准结合能[22]
图1  316LNss的显微组织和晶粒取向分布图
图2  原始态和锻造态316LNss在高温高压水中浸泡190 h后表面氧化物的SEM像
图3  316LNss在高温高压水环境中浸泡190 h后氧化膜的XRD谱
图4  原始态和锻造态316LNss在高温高压水环境中浸泡190 h形成氧化膜的化学成分
图5  归一化处理后原始态和锻造态316LNss样品表面氧化膜内Fe、Ni和Cr元素的含量
图6  原始态和锻造态316LNss在高温高压水环境中浸泡190 h形成氧化膜中Cr 2p3/2谱分峰图
图7  原始态和锻造态316LNss在高温高压水环境中浸泡190 h形成氧化膜中Ni 2p3/2谱分峰图
图8  原始态和锻造态316LNss在高温高压水环境中浸泡190 h形成氧化膜中Fe 2p3/2谱分峰图
图9  316LNss原始态和锻造态在高温高压水环境中浸泡190 h后氧化膜中O 1s谱分峰图
Oxide O Cr Fe Ni
As-received A1 35.66 10.36 44.60 09.38
A2 35.51 09.42 46.63 08.44
Forged and solution anneal treated B1 34.71 10.31 45.55 09.43
B2 35.53 11.07 43.87 09.53
表3  316LNss在高温高压水中浸泡190 h后表面氧化物的SEM-EDS分析结果
图10  316LNss 在高温高压水中表面氧化膜的膜层结构模型
1 J. Panter, B. Viguier, J. M. Cloué, M. Foucault, P. Combrade, E. Andrieu,Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600, Journal of Nuclear Materials, 348(1), 213(2006)
2 S. Wang, T. Shoji, N. Kawaguchi,Initiation of environmentally assisted cracking in high-temperature water, Corrosion, 61(2), 137(2005)
3 S. M. Bruemmer, L. E. Thomas, Insights into stress-corrosion cracking mechanisms from high-resolution measurements of crack-tip structures and compositions in: MRS Proceedings, edited by J. K. Gibson, S. K. McCall, E. D. Bauer, L. Soderholm, T. Fanghaenel, R. Devanathan, A. Misra, C. Trautmann, B. D. Wirth (UK, Cambridge Univ Press, 2010) P. 1264-BB01-09
4 D. D. MacDonald, M. Urquidi-MacDonald,A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments, Corrosion Science, 32(1), 51(1991)
5 R. B. Rebak, Z. Szklarska-Smialowska,The mechanism of stress corrosion cracking of alloy 600 in high temperature water, Corrosion Science, 38(6), 971(1996)
6 M. Bojinov, A. Galtayries, P. Kinnunen, A. Machet, P. Marcus,Estimation of the parameters of oxide film growth on nickel-based alloys in high-temperature water electrolytes, Electrochimica Acta, 52(26), 7475(2007)
7 X. Liu, X. Wu, E. -H Han,Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water, Corrosion Science, 65, 136(2012)
8 X. Liu, X. Wu, E. -H Han,Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water, Electrochimica Acta, 108, 554(2013)
9 Y. Soma, C. Kato, M. Yamamoto,Multilayered surface oxides within crevices of Type 316L stainless steels in high-temperature pure water, Corrosion, 70(4), 366(2014)
10 D. Féron,E. Herms , B. Tanguy, Behavior of stainless steels in pressurized water reactor primary circuits, Journal of Nuclear Materials, 427(1), 364(2012)
11 X. Liu, E. -H HanX. Wu,Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water, Corrosion Science, 78, 200(2014)
12 W. Kuang, X. E. -H Han Wu. Influence of dissolved oxygen concentration on the oxide film formed on Alloy 690 in high temperature water, Corrosion Science, 69, 197(2013)
13 J. Kim, D. Kim, S. Suwas, E. Fleury, K. Yi,Grain-size effects on the high-temperature oxidation of modified 304 austenitic stainless steel, Oxidation of Metals, 79(3), 239(2013)
14 L. Tan, K. Sridharan, T. R. Allen,The effect of grain boundary engineering on the oxidation behavior of Incoloy alloy 800H in supercritical water, Journal of Nuclear Materials, 348(3), 263(2006)
15 S. Cissé, L. Laffont, M. Lafont, B. Tanguy, E. Andrieu,Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor, Journal of Nuclear Materials, 433(1), 319(2013)
16 S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi, T. Yamada,The role of cold work and applied stress on surface oxidation of 304 stainless steel, Corrosion Science, 56, 78(2012)
17 J. Hou, T. Shoji, Z. P. Lu, Q. J. Peng, J. Q. Wang, E. -H. Han, W. Ke,Residual strain measurement and grain boundary characterization in the heat-affected zone of a weld joint between Alloy 690TT and Alloy 52, Journal of Nuclear Materials, 397(1), 109(2010)
18 Q. J. Peng, J. Hou, T. Yonezawa, T. Shoji, Z. M. Zhang, F. Huang, E. -H. Han, W. Ke,Environmentally assisted crack growth in one-dimensionally cold worked Alloy 690TT in primary water, Corrosion Science, 57, 81(2012)
19 T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J. J. Jonas,Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 60, 130(2014)
20 Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, R. D. K. Misra,An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation, Materials Science and Engineering A, 585, 71(2013)
21 ZHANG Litao,WANG Jianqiu, Stress corrosion crack propagation behavior of domestic forged nuclear grade 316L stainless steel in high temperature and high pressure water, Acta Metallurgica Sinica, 49(08), 911(2013)
21 (张利涛, 王俭秋, 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为, 金属学报, 49(08), 911(2013)
22 J. F. Moulder, F. S. William, E. S. Peter, Handbook of X-ray Photoelectron Spectroscopy (USA, Perkin-Elmer Corporation, 1992) p. 72
23 Z. Zhang, J. Q. Wang, E.-H. Han,Characterization of different surface states and its effects on the oxidation behaviours of Alloy 690TT, Journal of Materials Science and Technology, 28(4), 353(2012)
24 S. Perrin, L. Marchetti, C. Duhamel, M. Sennour, F. Jomard,Influence of irradiation on the oxide film formed on 316?L stainless steel in PWR primary water, Oxidation of Metals, 80(5), 623(2013)
25 X. Liu, X. Wu, E. -H. Han,Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water, Corrosion Science, 65, 136(2012)
26 P. Marcus, J. M. Grimal,The anodic dissolution and passivation of NiCrFe alloys studied by ESCA, Corrosion Science, 33(5), 805(1992)
27 H. Sun, X. Wu, E. -H. Han,Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution, Corrosion Science, 51(12), 2840(2009)
28 B. Stellwag,The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corrosion Science, 40(2), 337(1998)
29 F. Huang, J. Q. Wang, E. -H. Han, W. Ke,Short-time oxidation of Alloy 690 in high-temperature and high-pressure steam and water, Journal of Materials Science and Technology, 28(6), 562(2012)
30 H. Sun, X. Wu, E. -H. Han, Y. Wei,Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water, Corrosion Science, 59, 334(2012)
31 N. K. DasT. Shoji,Early Stage oxidation initiation at different grain boundaries of fcc Fe-Cr binary alloy: a computational chemistry study, Oxidation of Metals, 79(3), 429(2013)
32 V. A. Ignatova, S. Van Dyck, R. Gr?tzschel, W. M?ller,XPS depth profiling of oxide scales of stainless steels formed in high-temperature aqueous conditions, Surface and Interface Analysis, 38(4), 396(2006)
33 X. Liu, X. Wu, E.-H. Han,Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water, Corrosion Science, 53(10), 3337(2011)
[1] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[2] 张帅杰, 吴谦, 陈志堂, 郑滨松, 张磊, 徐翩. MnMg-Y-Cu合金的组织和性能的影响[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] 杨宝磊, 刘廷光, 苏香林, 范宇, 邱亮, 陆永浩. 热老化对316LN力学性能和晶间腐蚀敏感性的影响[J]. 材料研究学报, 2023, 37(5): 381-390.
[4] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[5] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[6] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[7] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[8] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[9] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[10] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[11] 宋建宇, 李想, 王启安, 沈龙海, 齐东丽, 冯瑜, 陈建金. 磁场方向对碱腐蚀构建多晶硅绒面结构的影响[J]. 材料研究学报, 2021, 35(9): 682-688.
[12] 李玲妹, 黄惠珍, 张青环, 帅歌旺. PSn-9Zn-0.1S无铅钎料性能的影响[J]. 材料研究学报, 2021, 35(8): 615-622.
[13] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[14] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[15] 谌理飞, 罗云蓉, 张应迁, 李辉, 李秀兰, 廖文丽. 盐雾预腐蚀对HRB400E抗震钢筋超低周疲劳性能的影响[J]. 材料研究学报, 2021, 35(2): 101-109.