Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 737-743    DOI: 10.11901/1005.3093.2014.371
  本期目录 | 过刊浏览 |
低碳贝氏体钢双面埋弧焊接头的组织和低温韧性*
张敏(),任晓龙,邢奎,李继红
西安理工大学材料科学与工程学院 西安 710048
Microstructure and Low Temperature Toughness of Weld Joints Prepared by Double-sided Submerged Arc Welding for Low Carbon Bainite Steel
Min ZHANG(),Xiaolong REN,Kui XING,Jihong LI
College of Material Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
引用本文:

张敏,任晓龙,邢奎,李继红. 低碳贝氏体钢双面埋弧焊接头的组织和低温韧性*[J]. 材料研究学报, 2015, 29(10): 737-743.
Min ZHANG, Xiaolong REN, Kui XING, Jihong LI. Microstructure and Low Temperature Toughness of Weld Joints Prepared by Double-sided Submerged Arc Welding for Low Carbon Bainite Steel[J]. Chinese Journal of Materials Research, 2015, 29(10): 737-743.

全文: PDF(4640 KB)   HTML
摘要: 

对低碳贝氏体钢进行双面埋弧焊焊接, 并用光学显微镜和PSW750型示波冲击试验机对焊接接头进行表征, 研究了钢的显微组织和低温韧性。结果表明: 低碳贝氏体钢双面埋弧焊后, 焊缝区的组织为针状铁素体和粒状贝氏体; HAZ的组织为贝氏体铁素体和粒状贝氏体; HAZ熔合线附近的硬度最高, 远离熔合线硬度降低并逐渐接近母材金属的硬度; 随着温度的降低焊接过程中的凝固偏析、高度集中的位错源来不及松弛应力集中以及分布在晶界上的Ti、Mo等微合金元素形成的碳氮化物, 导致焊接接头焊缝区和HAZ韧性降低并在-20℃和-60℃发生韧脆转变。

关键词 金属材料低碳贝氏体钢埋弧焊显微组织低温韧性    
Abstract

The low carbon bainite steel was welded by double-sided submerged arc welding and the microstructure and low temperature toughness of the joints was studied by optical microscope and PSW750 instrumented impact testing machine. The results show that the microstructure of the weld seam consisted of acicular ferrite and granular bainite, however the HAZ shows a microstructure consisted of bainite ferrite and granular bainite. The hardness at HAZ near the weld bond is the highest and then decreases gradually approaching to the hardness of base metal. In comparison to the matrix the weld seam and HAZ show a lower toughness with a ductile brittle transition temperature at -20℃and -60℃ respectively, which may be ascribed to the occurrence of solidification segregation, highly concentrated dislocations and formation of carbon nitrides of alloying elements such as Ti and Mo at grain boundaries etc. in the weld joints during rapid cooling after welding.

Key wordsmetallic materials    low carbon bainite steel    submerged arc welding    microstructure    low temperature toughness
    
基金资助:* 国家自然科学基金No 51274162,国家高新技术研究发展计划和西安市科技计划项目No.CX 12136
C Si Mn P S Ni
0.044 0.20 1.95 0.011 0.002 0.39
Cr Nb V Ti Mo Cu
0.28 0.07 0.01 0.014 0.25 0.21
表1  低碳贝氏体钢的化学成分(质量分数, %)
Welding zone Welding speed (m/min) I/A V/V Welding energy (J/cm)
Frontal 1.7 1300 33 12113
Reverse 1.7 1550 33.5 14661
表2  焊工艺参数
图1  低碳贝氏体钢接头的宏观形貌
图2  焊接接头的显微组织
图3  低碳贝氏体钢焊接接头各区域的显微硬度分布
T/℃ HAZ WM
Ai/J AP/J AK/J Ai/J AP/J AK/J
20 96.4108 125.6647 222.0755 77.46998 98.7831 176.2531
0 129.718 91.6835 221.4015 90.4615 79.286 169.7475
-20 132.524 89.033 221.557 107.7524 30.5835 138.3359
-40 125.483 80.7174 206.2004 83.8334 25.832 109.6654
-60 87.07121 35.5244 122.5956 71.15321 18.6816 90.01284
表3  焊接接头的冲击性能
图4  韧性变化趋势图
图5  焊接接头冲击断后表面的扫描照片
C Mn Si Mo Ni
0.039 1.78 0.17 0.19 0.83
Ti B Cu Al Cr
0.003 0.0052 0.12 0.084 0.24
表4  焊接接头焊缝区的化学成分(质量分数, %)
图6  焊缝和母材中夹杂物的分布
1 Yang J R,Huang C Y, Wang S C, The development of ultra-low-carbon bainitic steels, Materials & Design, 6(1), 335(1992)
2 Lis A K,Lis J, Jeziorski L, Advanced ultra-low carbon bainitics steels with high toughness, Journal of Materials Processing Technology, 64(1), 255(1997)
3 I. A. Yakubtsov, P. Poruks, J. D. Boyd,Microstructure and mechanical proprieties of bainitic low carbon high strength plate steels, Materials Science and Engineering A, 480(1), 109(2008)
4 Vassilaros M G,Czyryca E J, The development of high strength cooling-rate insensitive ultra-low carbon steel weld metals, Key Engineering Materials, 84(3), 587(1993)
5 Hillenbrand H G,Development of high strength material and pipe production technology for grade X120 line pipe, Proceedings of IPC 2004-International Pipeline Conference, Calgary, Canada, 1(2004)
6 TAO Peng,ZHANG Chi, YANG Zhigang, The microstructure and mechanical property of X70, X80 and X100 grade pipeline steel, Welded Pipe and Tube, 19(2), 31(2008)
6 (陶 鹏, 张 弛, 杨志刚, 高钢级管线钢的组织和力学性能, 焊管, 19(2), 31(2008))
7 LI Jiwei,LIU Qinsuo, The research status on ULCB steel, Journal of Tianjin University of Technology, 24(1), 57(2008)
7 (李纪委, 刘庆锁, 超低碳贝氏体钢的研究现状, 天理工大津学学报, 24(1), 57(2008))
8 HUO Lixing, Welding structure and engineering strength, (Beijing, China Machine Press, 1995)p13
8 (霍立兴, 焊接结构工程强度, (北京, 机械工业出版社, 1995)p13)
9 LI Jihong,YANG Liang, CHENG Feichou, ZHANG Min, Microstructure and mechanical properties of welding joints of X100 line pipe by double submerged arc welding, Welding Journal, 34(10), 27(2013)
9 (李继红, 杨 亮, 陈飞稠, 张 敏, X100管线钢双丝埋弧焊焊接接头微观组织与力学性能, 34(10), 27(2013))
10 ZHANG Wenyue, Welding Metallurgy, (Beijing, China Machine Press, 2011)p185
10 (张文钺, 焊接冶金学, (北京, 机械工业出版社, 2011)p185)
11 YANG Caifu,ZHANG Yongquan, The research of 10Ni5CrMoV steel low temperature impact fracture behavior, Mater Devel &Appl, 12(6), 2(1997)
11 (杨才福, 张永权, 10Ni5CrMoV钢低温冲击断裂行为研究, 材料开发与应用, 12(6), 2(1997))
12 ZHOU Hongchen,DAI Shujuan, GAN Cuihua, JIANG Haitao, Study on fractal of impact properties of materials, Material for Mechanical Engineering, 18(6), 31(1994)
12 (邹鸿承, 戴蜀娟, 甘翠华, 江海涛, 材料冲击性能的分形研究, 机械工程材料, 18(6), 31(1994))
13 DUAN Linna,LIU qingyou, JIA Shujun, Microstructure of X100 characteristics and strength-toughness of X100 pipeline steel, Chinese Journal of Materials Research, 26(4), 443(2012)
13 (段琳娜, 刘清友, 贾书君, X100管线钢的组织和强韧性, 材料研究学报, 26(4), 443(2012))
14 ZHANG Min,YANG Liang, LI Jihong, Effects of welding heat input on properties of joints of X100 pipeline steel, Chinese Journal of Materials Research, 26(6), 1(2012)
14 (张 敏, 杨 亮, 李继红, 焊接热输入对X100管线钢接头性能的影响, 材料研究学报, 26(6), 1(2012))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.