Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (2): 81-87    DOI: 10.11901/1005.3093.2014.337
  本期目录 | 过刊浏览 |
铁纳米粒子/碳纤维/环氧树脂基复合材料的制备和吸波性能
王永辉,赛义德,黄昊,薛方红,张黎,董星龙()
大连理工大学材料科学与工程学院 三束材料改性教育部重点实验室 大连 116024
Fabrication and Electromagnetic Microwave Absorbing Properties of Fe-Nanoparticles/Carbon Fibers/Epoxy Resin Based Composites
Yonghui WANG,Shah Asif,Hao HUANG,Fanghong XUE,Li ZHANG,Xinglong DONG()
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

王永辉,赛义德,黄昊,薛方红,张黎,董星龙. 铁纳米粒子/碳纤维/环氧树脂基复合材料的制备和吸波性能[J]. 材料研究学报, 2015, 29(2): 81-87.
Yonghui WANG, Shah Asif, Hao HUANG, Fanghong XUE, Li ZHANG, Xinglong DONG. Fabrication and Electromagnetic Microwave Absorbing Properties of Fe-Nanoparticles/Carbon Fibers/Epoxy Resin Based Composites[J]. Chinese Journal of Materials Research, 2015, 29(2): 81-87.

全文: PDF(2522 KB)   HTML
摘要: 

用直流电弧等离子体法制备Fe纳米粒子, 用作微波吸收剂。用γ-氨丙基三乙氧基硅烷(KH550)对Fe纳米粒子的表面改性, 然后按不同比例与环氧树脂均匀混合。在混合物中添加碳纤维后制备出Fe纳米粒子/碳纤维/环氧树脂基功能/结构一体化吸波复合材料, 研究了吸收剂的添加量和浓度梯度、碳纤维以及平板结构等因素对其在2-18 GHz范围内吸波性能的影响。结果表明, 碳纤维促进了结构体内电磁波的多重反射与吸收, 在低频段出现反射损耗峰并提高吸波性能; 随着Fe纳米粒子含量的提高吸波能力逐渐增强, 吸收峰向低频移动; 在环氧树脂的固化过程重力导致Fe纳米粒子浓度呈梯度分布, 使平板状复合材料正、反两面的吸波性能出现差异, 吸收剂浓度的梯度分布有利于电磁波的进入和吸收。

关键词 复合材料反射损耗Fe纳米粒子碳纤维    
Abstract

Fe-nanoparticles (NPs)/ carbon fibers (CF)/epoxy resin (EP) based composites were designed and fabricated. The microwave absorbers Fe-NPs were prepared by the direct current (DC) arc-discharge plasma method and modified with silane coupling agent KH550. The reflection losses of composites were measured in the frequency range of 2-18 GHz and the effects of Fe-NPs, CF and the geometry feature of test plates on the microwave absorbing properties were investigated. Results show that reflection loss peaks appear at low frequency and the microwave absorbing properties are enhanced due to the addition of CF. With the increasing mass fraction of Fe-NPs the microwave dissipation increases and the reflection loss peaks move towards the low frequency. The concentration gradient of Fe-NPs in EP matrix was caused by gravity during the preparation process and it causes reflection loss differences between the two surfaces of a plate, which is beneficial for microwave to enter the composite plate and be absorbed by properly setting the plate.

Key wordscomposite    reflection loss    Fe nanoparticles    carbon fiber
收稿日期: 2014-07-11     
基金资助:* 国家自然科学基金51271044、51331006、51171033资助。
图1  平板状Fe纳米粒子/碳纤维/环氧树脂复合材料制备流程图
Fe NPs content (mass fraction,%) 0% 20% 30%
Thickness/mm 4.01 4.36 4.73
表1  不同Fe纳米粒子含量碳纤维/环氧树脂基复合板样品厚度
图2  弓形反射法测试系统示意图
图3  Fe 纳米粒子XRD谱和 TEM像
图4  KH550对Fe纳米粒子表面改性机制
图5  Fe纳米粒子改性前后及KH550的红外光谱
图6  改性前后Fe纳米粒子分散情况(A: 改性前, B: 改性后)
图7  Fe纳米粒子/碳纤维/环氧树脂基复合材料板截面中元素分布
图8  不同Fe纳米粒子含量的复合材料板的正面反射损耗
图9  不同Fe含量的复合材料板的正面、反面反射损耗
Samples < -5dB < -10dB
20% Fe with CF top surface 5.8~11 GHz -
20% Fe with CF reverse surface 4.3~8.6 GHz 13.5~18 GHz 15.6~17.6 GHz
30% Fe with CF top surface 4.2~10.4 GHz 15~18 GHz 5~6.9 GHz
30% Fe with CF reverse surface 2.9~17.1 GHz 11.2~14.2 GHz
表2  反射损耗值对应的频率范围
1 LIU Shunhua, LIU Junmin, DONG Xinglong, Electromagnetic Shielding and Absorbing Materials (Beijing, Chemical Industry Press, 2006)p.255
1 (255)
2 I. Masahiro, T. Masao, S. Fumiyoshi, M. Ken-ichi,Broadband electromagnetic wave absorbers prepared by grading magnetic powder density, Journal of Applied Physics, 108, 063911(2010)
3 LI Xiaomin,ZHU Zhenghou, ZHENG Xialian, LIU Jilei, HUO Jia, Study on the SMC molding technology and absorbing properties of new-type absorbing composite, Journal of Functional Materials, 3(44), 337(2013)
3 (李晓敏, 朱正吼, 郑夏莲, 刘吉磊, 霍 佳, 新型吸波复合材料的SMC成型工艺及吸波性能研究, 功能材料, 3(44), 337(2013))
4 GUAN Denggao,HUANG Wanxia, MAO Jian, JIANG Yu, CHEN Jiazhao, TU Mingjing, Study on shielding functionally gradient materials with lower flection loss and high absorption loss for electromagnetic wave, Journal of Functional Materials, 6(34), 676(2003)
4 (管登高, 黄婉霞, 毛 键, 蒋 渝, 陈家钊, 涂铭旌, 低反射高吸收梯度电磁波屏蔽复合材料研究, 功能材料, 6(34), 676(2003))
5 WANG Zhihui,LUO Wu, XIA Zhidong, HU Chuanxin, Study on multilayer radar wave absorbing coatings, Ordnance Material Science and Engineering, 29(1), 61(2006)
5 (王智慧, 骆 武, 夏志东, 胡传忻, 化学镀层与涂层复合多层结构雷达波吸收性能研究, 兵器材料科学工程, 29(1), 61(2006))
6 CAO Guozhong, WANG Yingzhu,Translated by DONG Xinglong, Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Beijing, Higher Education Press, 2012)p.14, p.329
6 曹国忠, 王颖著, 董星龙译, 纳米结构和纳米材料: 合成、性能及应用(北京, 高等教育出版社, 2012)p(14, p.329
7 J. L. Snoke,New Developments in Ferro- magnetic Materials (Amsterdam, Elsevier, 1947)p.25
8 B. Lv, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, J. P.Sun,Microwave absorption properties of the core/shell-type iron and nickel nanoparticles, Journal of Magnetism and Magnetic Materials, 320, 1106(2008)
9 C. K. Po, G. L. Dai,Composite sandwich constructions for absorbing the electromagnetic waves, Composite Structures, 87, 161(2009)
10 MA Chengyin,WU Yuanxiong, TANG Pingsheng, MENG Jie, Preparationand surface modification of nano-SnO2, Chinese Journal of Applied Chemistry, 26(2), 198(2009)
10 (马承银, 吴元雄, 唐平生, 孟 杰, SnO2纳米粒子的制备与表面改性, 应用化学, 26(2), 198(2009))
11 I. J. Bruce, T. Sen,Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations, Langmuir, 21, 7029(2005)
12 B. G. Wei, Q. Chang, C. X. Bao, L. Dai, G. Z. Zhang, F. P. Wu,Surface modification of filter medium particles with silane coupling agent KH550, Colloids and Surfaces A, Physicochem. Eng. Aspects, 434, 276(2013)
13 SHI Mengshi,The Fabrication and Properties of Fe/epoxy Nanocomposites, Master Dissertation, Dalian University of Technology(2012)
13 (石梦诗, 铁纳米粒子/环氧树脂复合材料的制备及性能分析, 硕士学位论文, 大连理工大学(2012))
14 A. Berthault, D. Rousselle, G. Zerah,Magnetic properties of permalloy microparticles, Journal of Magnetism and Magnetic Materials, 112, 477(1992)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.