Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 814-820    DOI: 10.11901/1005.3093.2014.267
  本期目录 | 过刊浏览 |
SiC泡沫陶瓷/Fe基双连续相复合材料的制备和性能
任志恒,金鹏,曹小明,张劲松()
中国科学院金属研究所 沈阳 110016
Preparation and Performance of SiC Foam Ceramic/Fe Matrix Co-continuous Phase Composites
Zhiheng REN,Peng JIN,Xiaoming CAO,Jinsong ZHANG()
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

任志恒,金鹏,曹小明,张劲松. SiC泡沫陶瓷/Fe基双连续相复合材料的制备和性能[J]. 材料研究学报, 2014, 28(11): 814-820.
Zhiheng REN, Peng JIN, Xiaoming CAO, Jinsong ZHANG. Preparation and Performance of SiC Foam Ceramic/Fe Matrix Co-continuous Phase Composites[J]. Chinese Journal of Materials Research, 2014, 28(11): 814-820.

全文: PDF(3468 KB)   HTML
摘要: 

将SiC泡沫陶瓷氧化, 用挤压铸造法制备SiC泡沫陶瓷/Fe基双连续相复合材料并对其退火, 研究了制备工艺和SiC泡沫陶瓷的体积分数对其微观组织和力学性能的影响。结果表明, 在1250℃氧化48 h后在SiC泡沫陶瓷表面生成了厚度为1 mm的SiO2反应阻挡层。在双连续相复合材料的制备过程中, SiO2反应阻挡层抑制Fe与SiC的化学反应, 避免了脆性化合物Fe3Si的生成, 改善了基体与增强体的界面, 使复合材料的抗弯强度提高2倍, 压缩强度提高18%。当SiC泡沫陶瓷的氧化时间增至72 h时, SiC泡沫陶瓷表面SiO2的厚度过大。SiO2与基体和增强体热膨胀系数不匹配, 使复合材料内相界面间的残余应力增加, 导致其性能下降。将SiC泡沫陶瓷/Fe基双连续相复合材料在600℃退火4 h, 可降低复合材料中的残余应力, 提高复合材料的性能。SiC的体积分数较低时, 金属基体的桥接、偏转裂纹的作用比较大, 复合材料的弯曲强度高, 变形程度大。随着复合材料中SiC体积分数的增大, SiC骨架筋增粗, 其承载能力加强, 复合材料的压缩强度呈提高的趋势。

关键词 复合材料泡沫陶瓷SiO2反应阻挡层力学性能    
Abstract

SiC foam ceramic/Fe based co-continuous phase composites were prepared by squeeze casting method using oxidized SiC foam ceramic. Then the prepared composites were annealed. The influence of preparation process and SiC volume fraction on microstructures and mechanical properties of the composites were investigated. Results show that a SiO2 barrier film of 1 mm in thickness on the surfaces of SiC foam can form after oxidizing at 1250°C for 48 h, which then can efficiently prevent the formation of a brittle intermetallic compound Fe3Si at the interface of Fe matrix and SiC during the preparation of composites. As a result, the flexural strength of composites was increased by 100% and compressive strength by 18%. The thickness of SiO2 film was increased after oxidizing at 1250°C for 72 h, and a thicker SiO2 film may induce mismatch of thermal expansion coefficient between SiO2, Fe and SiC, which thereby resulted in the increase of residual stress. Therefore, the mechanical properties of composites were decreased slightly. The residual stress could be relieved after annealing of composites at 600°C for 4 h, which improved the mechanical properties of composites. The function of bridging and deflecting crack of metal matrix is big for the composite with small SiC volume fraction, which is in turn beneficial to the enhancement of the flexural strength and flexural strain. For the composite with the higher SiC volume fraction, the size of SiC skeleton became bigger and the load-carrying capacity was strengthened, thereby its compressive strength was increased.

Key wordscomposites    foam ceramic    SiO2 reaction inhibitor    mechanical property
收稿日期: 2014-05-28     
基金资助:* 国家高技术研究发展计划2012AA03A508资助项目。
图1  SiC泡沫陶瓷形貌
Element C Si P S Mn Mg RE Fe
Content 4.2 1.63 0.076 0.029 0.26 0.08 0.016 Balance
表1  SiC/Fe基复合材料基体成分
图2  SiC泡沫陶瓷XRD谱
图3  1250℃氧化48 h后SiC泡沫陶瓷的形貌
图4  氧化后SiC泡沫陶瓷的XRD谱
图5  SiC泡沫陶瓷未氧化和氧化的复合材料的微观结构
图6  SiC泡沫陶瓷未氧化和氧化的复合材料的XRD谱
图7  SiC泡沫陶瓷分别氧化处理48和72 h后的微观结构
图8  SiC泡沫陶瓷氧化对复合材料力学性能的影响
Flexural stress Compressive stress
σbb/MPa k* σbc/MPa l**
Untreatment 64.97 499.12
Oxidation 48 h 130.83 2.01 589.93 1.18
Oxidation 72 h 109.97 1.69 580.47 1.16
表2  SiC泡沫陶瓷不同氧化处理的复合材料的力学性能比较
图9  退火对复合材料力学性能的影响
Flexural stress Compressive stress
σbb/MPa m*** σbc/MPa n****
Untreatment 130.83 589.93
600℃ annealing 142.17 1.09 634.12 1.07
750℃ annealing 123.56 0.94 543.92 0.92
表3  不同退火处理的复合材料的力学性能对比
图10  复合材料的压缩应力-应变与SiC体积分数的关系
图11  复合材料的弯曲应力-挠度与SiC体积分数的关系
1 CHEN Weiping,YANG Shaofeng, HAN Mengyan, Research development of ceramic/Fe-based alloy composites, The Chinese Journal of Nonferrous Metals, 20(2), 257(2010)
1 (陈维平, 杨少锋, 韩孟岩, 陶瓷/铁基合金复合材料的研究进展, 中国有色金属学报, 20(2), 257(2010))
2 NIE Cunzhu,ZHAO Naiqin, Review of metal-matrix composite materials for electronic packaging, Heat Treatment of Metals, 28(6), 1(2003)
2 (聂存珠, 赵乃勤, 金属基电子封装复合材料的研究进展, 金属热处理, 28(6), 1(2003))
3 HAN Hui,LI Jun, JIAO Lijuan, LI Nan, Study on the application of ceramic-metal composite materials in bulletproof field, Materials Review, 21(2), 34(2007)
3 (韩 辉, 李 军, 焦丽娟, 李 楠, 陶瓷-金属复合材料在防弹领域的应用研究, 材料导报, 21(2), 34(2007))
4 D. R. Clarke,Interpenetrating phase composites, Journal of the American Ceramic Society, 75(4), 739(1992)
5 C. San Marchi, M. Kouzeli, R. Rao, J. A. Lewis, D. C. Dunand,Alumina–aluminum interpenetrating-phase composites with three-dimensional periodic architecture, Scripta Materialia, 49(9), 861(2003)
6 M. L. Young, J. D. Almer, U. Lienert, D. R. Haeffner, R. Rao, J. A. Lewis, D. C. Dunand,Diffraction measurements of load transfer in interpenetrating-phase Al2O3/Al composites, in: Affordable Metal Matrix Composites for High-Performance Applications, edited by A. B. Pandey, K. L. Kending, T. J. Watson (Pennsylvania, TMS, 2003)p.225
7 XIE Sujing,CAO Xiaoming, ZHANG Jinsong, LI Shu, LIU Yang, Effect of 3D-meshy SiC on the dry friction and wear of aluminum alloys, Chinese Journal of Materials Research, 17(1), 10(2003)
7 (谢素菁, 曹小明, 张劲松, 李 曙, 刘 阳, 三维网络SiC对铝合金干摩擦磨损性能的影响, 材料研究学报, 17(1), 10(2003))
8 XING Hongwei,CAO Xiaoming, HU Wanping, TIAN Chong, ZHAO Longzhi, ZHANG Jinsong, Solidification microstructure of 3D-meshy SiC/Cu metal matrix composites, Chinese Journal of Materials Research, 18(6), 597(2004)
8 (邢宏伟, 曹小明, 胡宛平, 田 冲, 赵龙志, 张劲松, 三维网络SiC/Cu金属基复合材料的凝固显微组织, 材料研究学报, 18(6), 597(2004))
9 S. Sharma,N. E. Rayess, N. Dukhan, Preliminary Nvh characterization of metal foam-polymer interpenetrating phase composites, in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition 2009 (New York, ASME, 2010)p.445
10 FENG Shengshan,WANG Zejian, LIU Qingfeng, XU Shunhong, LI Jinshan, WANG Cungui, Damping characteristics of three-dimensional co-continuous network SiC/cast iron composites, Foundry Equipment and Technology, (4), 7(2009)
10 (冯胜山, 王泽建, 刘庆丰, 许顺红, 李金山, 王存贵, 三维连续网络结构碳化硅铸铁铸态复合材料的减振性能, 铸造设备与工艺, (4), 7(2009))
11 FENG Shengshan,WANG Zejian, LIU Qingfeng, YANG Zongming, Friction and abrasion characteristics of three-dimensional co-continuous network SiC/cast iron composites, Foundry Technology, 31(1), 56(2010)
11 (冯胜山, 王泽建, 刘庆丰, 杨宗明, 三维连续网络结构碳化硅/铸铁复合材料的摩擦磨损性能, 铸造技术, 31(1), 56(2010))
12 WEI Wentao,The preparation, microstructure and properties of the new type 3D-meshy SiC/Cu-Fe composite material, Master’s Dissertation (Northeastern University, 2009)
12 (魏文韬, 新型三维网络SiC/Cu-Fe复合材料的制备、组织与性能, 硕士学位论文 (东北大学, 2009))
13 W. M. Tang, Z. X. Zheng, H. F. Ding, Z. H. Jin,Control of the interface reaction between silicon carbide and iron, Materials Chemistry and Physics, 80(1), 360(2003)
14 B. S. Terry, O. S. Chinyamakobvu,Assessment of the reaction of SiC powders with iron-based alloys, Journal of Materials Science, 28(24), 6779(1993)
15 TANG Wenming,ZHENG Zhixiang, DING Houfu, JIN Zhihao, Progress in studies of the interface reaction and the interface optimization of Fe/SiC system, Ordnance Material Science and Engineering, 22(4), 64(1999)
15 (汤文明, 郑治祥, 丁厚福, 金志浩, Fe/SiC界面反应机理及界面优化工艺研究的进展, 兵器材料科学与工程, 22(4), 64(1999))
16 TANG Wenming,ZHENG Zhixiang, DING Houfu, JIN Zhihao, Oxidation of SiC and its effect on the interface stability of SiC/Fe, Journal of Inorganic Materials, 16(2), 289(2001)
16 (汤文明, 郑治祥, 丁厚福, 金志浩, SiC表面氧化及其对SiC/Fe界面稳定性的影响, 无机材料学报, 16(2), 289(2001))
17 SHI Lei,LIU Junwu, WANG Zhixiang, WANG Xiang, ZHENG Zhixiang, The effect of coated SiC powders on the sintering and mechanical properties of the SiCp/Fe composites, Journal of Hefei University of Technology, 23(2), 177(2000)
17 (石 磊, 刘君武, 王支相, 汪 翔, 郑治祥, SiC颗粒表面改性对SiCp/Fe烧结及性能的影响, 合肥工业大学学报(自然科学版), 23(2), 177(2000))
18 WANG Zejian,Study on the preparation and properties of three-dimensional co-continuous network SiC/Cast iron composites, Master Dissertation (Hubei University of Technology, 2009)
18 (王泽建, 三维连续网络结构碳化硅陶瓷/铸铁复合材料的制备方法及性能研究, 硕士学位论文 (湖北工业大学, 2009))
19 M. Hoffman, S. Skirl, W. Pompe, J. Rodel,Thermal residual strains and stresses in Al2O3/Al composites with interpenetrating networks, Acta Materialia, 47(2), 565(1999)
20 P. Agrawal, K. Conlon, K. J. Bowman, C. T. Sun, F. R. Cichocki, Jr., K. P. Trumble,Thermal residual stresses in co-continuous composites, Acta Materialia, 51(4), 1143(2003)
21 ZHANG Jinsong,CAO Xiaoming, TIAN Chong, HU Wanping, YANG Yongjin, Compact foamy thyrite in high intensity and preparation method, China patent, CN1600742A (2005)
21 (张劲松, 曹小明, 田 冲, 胡宛平, 杨永进, 一种高强度致密的泡沫碳化硅陶瓷材料及其制备方法, 中国专利, CN1600742A(2005))
22 ZHENG Chuanwei,High temperature oxidation behavior of several silicon carbide ceramics processed by reaction bonding method, PhD Dissertation (Institute of Metal Research, Chinese Academy of Sciences, 2009)
22 (郑传伟, 几种反应烧结碳化硅陶瓷材料的高温氧化行为研究, 博士学位论文 (中国科学院金属研究所, 2009))
23 C. Zheng, Z. Yang, J. Zhang,The high-temperature oxidation behavior of reaction-bonded porous silicon carbide ceramics in dry oxygen, Journal of the American Ceramic Society, 93(7), 2062(2010)
24 ZHANG Guoding,Interfaces in metal matrix composites, Chinese Journal of Materials Research, 11(6), 649(1997)
24 (张国定, 金属基复合材料界面问题, 材料研究学报, 11(6), 649(1997))
25 CUI Chunxiang,WU Renjie, WANG Haowei, Characteristics of interface and mechanical properties of MMCs, Aerospace Materials & Technology, 1(1997)
25 (崔春翔, 吴人杰, 王浩伟, 金属基复合材料界面特征与力学性能, 航空材料工艺, 1(1997))
26 FAN Dongli, PAN Jiansheng, XU Yueming, TONG Xiaohui, China Materials Engineering Canon (Vol.15) (Beijing, Chemical Industry Press, 2005) p.249
26 (249)
27 ZHENG Chuanwei,YANG Zhenming, TIAN Chong, CAO Xiaoming, ZHANG Jinsong, Oxidation characteristics of silicon carbide foam ceramic at elevated temperature, Rare Metal Materials and Engineering, 38(z3), 289(2009)
27 (郑传伟, 杨振明, 田 冲, 曹小明, 张劲松, SiC泡沫陶瓷材料的高温氧化行为, 稀有金属材料与工程, 38(z3), 289(2009))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.