Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (10): 794-800    DOI: 10.11901/1005.3093.2014.221
  本期目录 | 过刊浏览 |
有机粘土/聚醚砜/环氧树脂杂化纳米复合材料的制备和性能*
马收1,2(),郭建春1
1. 西南石油大学 油气藏地质及开发工程国家重点实验室 成都 637000
2. 中国石化胜利油田分公司 东营 2570822
Preparation and Properties of Organoclay/Polyethersulfone/Epoxy Hybrid Nanocomposites
Shou MA1,2,**(),Jianchun GUO1
1. State Key Laboratory of Oil and Gas Geology and Exploitation, Southwest Petroleum University, Chengdu 637000
2. SINOPEC Shengli Oilfield Company, Dongying 257082
引用本文:

马收,郭建春. 有机粘土/聚醚砜/环氧树脂杂化纳米复合材料的制备和性能*[J]. 材料研究学报, 2014, 28(10): 794-800.
Shou MA, Jianchun GUO. Preparation and Properties of Organoclay/Polyethersulfone/Epoxy Hybrid Nanocomposites[J]. Chinese Journal of Materials Research, 2014, 28(10): 794-800.

全文: PDF(5059 KB)   HTML
摘要: 

分别用溶剂法和熔融法成功制备了有机粘土/聚醚砜/环氧树脂杂化纳米复合材料, 对其拉伸性能、断裂韧性、热性能和微观结构进行了研究。结果表明: 两种杂化纳米复合材料的拉伸强度可达75 MPa以上, 模量可达3.0 GPa以上, 断裂韧性可达1.1 MPam1/2以上。观察到了聚醚砜和有机粘土对环氧树脂的协同增韧现象。聚醚砜/环氧树脂基体具有半互穿网络结构, 有机粘土片层呈有序剥离形态。用溶剂法制备的杂化纳米复合材料样本的玻璃化转变温度(Tg)在170℃以上, 用熔融法制备的样本的Tg在180℃以上。

关键词 复合材料杂化纳米复合材料聚醚砜有机粘土断裂韧性微观结构    
Abstract

Organoclay/polyethersulphone/epoxy hybrid nanocomposites were prepared by solvent method and melting method, respectively. Their tensile properties, fracture toughness, thermal properties and microstructures were then characterized. Their tensile strength arrived at 75 MPa, modulus reached 2.8GPa, and fracture toughness was over 1.1MPam1/2. Synergistic toughening effect of the polyethersulphone and organoclay on the epoxy resin was observed. Semi-interpenetrating network of the polyethersulphone/epoxy matrix was found by dynamic mechanical thermal analyzer (DMA) and transmission electron microscope (TEM). The results of X-ray diffractometer (XRD) analysis and TEM observation reveal that the organoclay possessed ordered exfoliated morphologies. Glass transition temperatures (Tgs) of the two hybrid nanocomposites were tested by dynamic mechanical thermal analysis (DMTA). The Tg of the specimen prepared by the solvent method was found higher than 170℃, while that by the melting method was more than 180℃.

Key wordscomposites    hybrid nanocomposite    polyethersulphone    organoclay    fracture toughness    microstructure
收稿日期: 2014-04-28     
基金资助:* 国家科技重大专项2011ZX05051资助项目。
图1  纯环氧树脂、PES/环氧共混物、纳米复合材料和杂化纳米复合材料的损耗角正切-温度的DMTA曲线
图2  样本断面蚀刻后和蚀刻前的SEM图
0% organoclay 1% organoclay 3% organoclay
Group 1 192℃ 189℃ 181℃
Group 2 181℃ 177℃ 175℃
Group 3 185℃ 182℃ 174℃
Group 4 194℃ 192℃ 187℃
表1  四组样本的玻璃化转变温度(Tg)
图3  在不同温度固化的均相结构的PES/环氧共混物和纯环氧的TEM图
图4  原土、有机化粘土、纳米复合材料和杂化纳米复合材料的XRD谱
图5  有机化粘土在杂化纳米复合材料(有机化粘土的质量分数为1%)的TEM图(a), 小的有机化粘土的团聚体(b); 大的有机化粘土团聚体(c, d)
Sample 2θ (°) Intensity D-spacing(nm)
Organoclay (1%)/PES/epoxy 1.062 1024 9.23
Organoclay (3%)/PES/epoxy 1.068 1065 9.18
表2  熔融法制备的杂化纳米复合材料的XRD数据
图6  含有1%有机化粘土的杂化纳米复合材料中粘土形态的TEM图
Sample Tensile strength (MPa) Tensile modulus (GPa) Elongation (%)
Epoxy resin 75.63±1.95 2.92±0.19 2.58±0.36
PES/epoxy by solvent method 78.36±2.31 2.88±0.06 2.94±0.24
Organoclay(1%)/PES/epoxy by solvent method 76.03±2.11 3.03±0.07 2.78±0.29
Organoclay(3%)/PES/epoxy by solvent method 72.49±1.89 3.11±0.08 2.71±0.42
Organoclay(1%)/PES/epoxy by melting method 77.19±3.06 2.98±0.13 2.74±0.62
Organoclay(3%)/PES/epoxy by melting method 73.08±2.02 3.01±0.12 2.61±0.51
表3  环氧树.脂、PES/环氧共混物、杂化纳米复合材料的拉伸测试结果
Solvent method
(cured at 120℃) neat epoxy organoclay(1%)/epoxy organoclay(1%)/epoxy
KIC (MPa m1/2) 0.58±0.11 0.73±0.05 0.81±0.06
(cured at 180℃) PES/epoxy organoclay(1%)/PES/epoxy organoclay(3%)/PES/epoxy
KIC (MPa m1/2) 0.73±0.03 0.78±0.02 0.80±0.02
(cured at 120℃) PES/epoxy organoclay(1%)/PES/epoxy organoclay(3%)/PES/epoxy
KIC (MPa m1/2) 0.77±0.10 1.15±0.10 0.93±0.05
Melting method
(cured at 120℃) PES/epoxy organoclay(1%)/PES/epoxy organoclay(3%)/PES/epoxy
KIC (MPa m1/2) 0.78±0.13 1.12±0.14 1.02±0.10
表4  固化温度不同的环氧树脂、PES/环氧共混物、纳米复合材料和杂化纳米复合材料的断裂韧性(KIC代表I型断裂韧性的临界值)
1 Jonghwi Lee, Albert F Yee, Micro-mechanical eformation mechanisms in the fracture of hybrid-particulate composites based on glass beads, rubber and epoxies, Polymer Engineering and Science, 40(12), 2457(2000)
2 Clive B Bucknall, Adrian H Gilbert, Toughening tetrafunctional epoxy resins using polyetherimide, Polymer, 30, 213(1989)
3 Clive B Bucknall, Ivana K Partidge, Phase separation in epoxy resins containing polyethersulphone, Polymer, 24, 639(1983)
4 MA Andres, J Garmendia, A Valea, A Eceiza, I Mondragon, Fracture toughness of epoxy resins modified with polyethersulfone: influence of stoichiometry on the morphology of the mixtures, Journal of Applied Polymer Science, 69, 183(1998)
5 Bejoy Francis, Sabu Thomas, G Viswanathan Asari, Rajagopal Ramaswamy, Seno Jose,V Lakshmana Rao, Synthesis of hydroxyl-terminated poly(ether ether ketone) with pendent tert-butyl groups and its use as a toughner for epoxy resins, Journal of Polymer Science: Part B: Polymer Physics, 44, 541(2006)
6 J. Park, S. Jana. The relationship between nano-micro-structures mechanical properties in PMMA–epoxy–nanoclay composites. Polymer, 44, 2091(2003)
7 D. Ratna, O. Becker, R. Krishnamurthy, G. Simon, R. Varley. Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate. Polymer, 44, 7449(2003)
8 M. Peng, H. Li, L. Wu, Y. Chen, Q. Zheng, W. Gu.Organically modified layered-silicates facilitate the formation of interconnected structure in the reaction-induced phase separation of epoxy/thermoplastic hybrid nanocomposite. Polymer, 46, 7612(2005)
9 J Frohlich, R Thomann, O Gryshchuk, J Karger-Kocsis, R Mulhaupt, High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber, Journal of Applied Polymer Science, 92, 3088(2004)
10 Weiping Liu, Suong V Hoa, Martin Pugh. Organoclay-modified high performance epoxy nanocomposites, Composites Science and Technology, 65, 307(2005)
11 A. Asif, K. Leena, V. Lakshmana Rao, K. N. Ninan. Hydroxyl Terminated Poly(ether ketone) with Pendant Methyl Group-Toughened Epoxy Clay Ternary Nanocomposites: Preparation, Morphology, and Thermomechanical Properties, Journal of Applied Polymer Science, 106, 307(2007)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.