Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (10): 775-780    DOI: 10.11901/1005.3093.2014.150
  本期目录 | 过刊浏览 |
LiODFB基电解液与高电压正极材料LiNi0.5Mn1.5O4的相容性*
周宏明1,2,耿文俊1,李荐1,2(),杨杰2,姚书恒1,孙文佼1
1. 中南大学材料科学与工程学院 长沙 410083
2. 湖南省正源储能材料与器件研究所 长沙 410083
Compatibility of LiODFB Electrolyte with LiNi0.5Mn1.5O4 as High-voltage Cathode Material
Hongming ZHOU1,2,Wenjun GENG1,Jian LI1,2,**(),Jie YANG2,Shuheng YAO1,Wenjiao SUN1
1. School of Materials Science and Engineering, Central South University, Changsha 410083
2. Hunan Province Zhengyuan Energy Storage Materials and Devices Research, Changsha 410083
引用本文:

周宏明,耿文俊,李荐,杨杰,姚书恒,孙文佼. LiODFB基电解液与高电压正极材料LiNi0.5Mn1.5O4的相容性*[J]. 材料研究学报, 2014, 28(10): 775-780.
Hongming ZHOU, Wenjun GENG, Jian LI, Jie YANG, Shuheng YAO, Wenjiao SUN. Compatibility of LiODFB Electrolyte with LiNi0.5Mn1.5O4 as High-voltage Cathode Material[J]. Chinese Journal of Materials Research, 2014, 28(10): 775-780.

全文: PDF(1700 KB)   HTML
摘要: 

研究了草酸二氟硼酸锂(LiODFB)基电解液与锂离子电池高电压正极材料锰酸镍锂(LiNi0.5Mn1.5O4)的相容性, 结果表明: 在25℃和60℃, 以LiODFB 和六氟磷酸锂(LiPF6)为电解液的LiNi0.5Mn1.5O4/Li电池的CV曲线都具有单一的氧化还原峰, 电池的可逆性优良, 且LiODFB电池的循环性能优于LiPF6电池。在25℃, LiODFB电池和LiPF6电池以0.5C倍率首次充放电比容量分别为126.3 mAhg-1、131.6 mAhg-1, 经100次循环后容量保持率分别为97.1%、94.7%; 在60℃, LiODFB电池和LiPF6电池以0.5C倍率首次充放电比容量分别为132.6 mAhg-1、129.1 mAhg-1, 经100次循环后容量保持率分别为94.1%、81.7%。电化学阻抗谱也表明: 在60℃, LiODFB电池的阻抗比LiPF6电池的小, LiODFB电池具有更好的高温充放电性能。

关键词 材料科学基础学科草酸二氟硼酸锂锰酸镍锂电化学性能相容性    
Abstract

The compatibility of lithium di?uoro(oxalato)borate (LiODFB) electrolyte with LiNi0.5Mn1.5O4 as high-voltage cathode material was investigated by cyclic voltammetry, charge-discharge test and AC impedance. The results show that the LiNi0.5Mn1.5O4/Li half cells with LiODFB or LiPF6 as electrolyte all have simple REDOX peak at 25℃ and 60℃, and the battery has an excellent reversibility. The battery with LiODFB has better cycle performance than that with LiPF6 at 25℃ and 60℃. Their 0.5C initial discharge specific capacities at 25℃ are 126.3 mAh?g-1 and 131.6 mAh?g-1, and the capacity retention ratios by the 100th cycle are 97.1 % and 94.7% respectively. The 0.5 C initial discharge specific capacities at 60℃are 132.6 mAhg-1 and 129.1 mAhg-1, and capacity retention ratios by the 100th cycle are 94.1% and 81.7% respectively. AC impedance plots also show that the battery with LiODFB has a lower charge-transfer resistance than that with LiPF6 at 60℃, indicating that the battery with LiODFB has excellent cyclic performance at high temperature.

Key wordsfoundational discipline in materials science    lithium di?uoro(oxalato)borate    LiNi0.5Mn1.5O4    electrochemical performance    compatibility
收稿日期: 2014-04-01     
基金资助:* 湖南省科技计划2013GK3002和长沙市科技计划K1202039-11资助项目。
图1  LiNi0.5Mn1.5O4/Li电池在不同温度的循环伏安曲线
图2  LiNi0.5Mn1.5O4/Li电池在不同温度的首次充放电曲线
图3  LiNi0.5Mn1.5O4/Li电池在不同倍率下的循环性能曲线
图4  LiNi0.5Mn1.5O4/Li电池在不同温度的循环性能曲线
图5  LiNi0.5Mn1.5O4/Li电池在不同温度循环前后的EIS谱
图6  电解液体系的等效电路图
Situation RL(LiODFB) RL(LiPF6) Rct(LiODFB) Rct(LiPF6)
25℃ before cycling 12.3 7.7 342.1 305.2
25℃ after cycling 13.6 8.6 380.9 345.7
60℃ before cycling 4.2 22.2 7.3 40.8
60℃ after cycling 7.9 38.2 8.6 67.3
表1  不同温度下LiODFB与LiPF6在LiNi0.5Mn1.5O4/Li电池中的电阻值
图7  LiNi0.5Mn1.5O4/Li电池循环前后LiNi0.5Mn1.5O4极片的SEM像
1 LIU Guoqiang, QI Lu, WEN Lei, Synthesis and electrochemical performance of LiNixMn2-xO4 spinel as cathode material for lithium ion batteries, Rare metal materials and Engineering, 35(2), 299(2006)
1 (刘国强, 其鲁, 闻雷,锂离子电池正极材料LiNixMn2-xO4的制备和电化学性能研究, 稀有金属材料与工程, 35(2), 299(2006))
2 YI Tingfeng, YUE Caibo, HE Xiaojun, ZHU Rongsun, HU Xinguo, Review of research on synthesis and properties of LiNi0.5Mn1.5O4, Chinese Battery Industry, 13(4), 262(2008)
2 (伊廷锋, 岳彩波, 何孝军, 诸荣孙, 胡信国, LiNi0.5Mn1.5O4 材料合成及性能的研究综述, 电池工业, 13(4), 262(2008))
3 JI Yong, WANG Zhixing, YIN Zhoulan, GUO Huajun, PENG Wenjie, LI Xinhai, Synthesis and properties of cathode material LiNi0.5Mn1.5O4, Chinese Journal of Inorganic Chemistry, 23(4), 597(2007)
3 (季勇, 王志兴, 尹周澜, 郭华军, 彭文杰, 李新海, 正极材料LiNi0.5Mn1.5O4 的合成及性能, 无机化学学报, 23(4), 597(2007))
4 TANG Zhiyuan, HU Ran, WANG Lei, Research progress on LiNi0.5Mn1.5O4 compound as 5V anode materials for lithium ion batteries, Chemical Industry and Engineering Progress, 25(1), 31(2006))
4 (唐致远, 胡冉, 王雷, 5V 锂离子电池正极材料LiNi0.5Mn1.5O4 的研究进展, 化工进展, 25(1), 31(2006))
5 FANG Haisheng, WANG Zhixing, LI Xinhai, GUO Huajun, PENG Wenjie, Synthesis and property of LiNi0.5Mn1.5O4 for high-voltage lithium ion batteries, Chinese Battery Industry, 11(1), 36(2006)
5 (方海升, 王志兴, 李新海, 郭华军, 彭文杰, 高电压锂离子电池 LiNi0.5Mn1.5O4的合成及性能, 电池工业, 11(1), 36(2006))
6 YANG Xulai, WANG Yang, CAO Hekun, XU Xiaoming, Progress in high-voltage electrolytes for lithium ion batteries, Chinese Journal of Power Sources, 36(8), 1235(2012)
6 (杨续来, 汪 洋, 曹贺坤, 徐小明, 锂离子电池高电压电解液研究进展, 电源技术, 36(8), 1235(2012))
7 TANG Zhiyuan, YANG Guangming, WANG Qian, Research progress in modif ication of LiNi0.5Mn1.5O4 compound as 5V anode materials for lithium ion batteries, Materials Review, 21(6), 35(2007)
7 (唐志远, 杨光明, 王倩, 5V锂离子电池正极材料LiNi0. 5Mn1. 5O4 改性研究现状, 材料导报, 21(6), 35(2007))
8 Sheng Shui Zhang,An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochemistry Communications, 8(9), 1423(2006)
9 M. H. Fu, K. L. Huang, S. Q. Liu, J. S. Liu, Y. K. Li, Lithium di?uoro(oxalato) borate/ethylene carbonate + propylene carbonate + ethyl(methyl)carbonate electrolyte for LiMn2O4 cathode, Journal of Power Sources, 195(11), 862(2010)
10 Sheng Shui Zhang,Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte, Journal of Power Sources, 163(7), 713(2007)
11 CUI Xiaoling, LI Shiyou, LUO Jianguo, Research progress in electrolyte lithium salt lithium oxalyldifluoroborate, Battery Bimonthly, 39(4), 233(2009)
11 (崔小玲, 李世友, 骆建国, 电解质锂盐草酸二氟硼酸锂的研究进展, 电池, 39(4), 233(2009))
12 Sheng Shui Zhang, K. Xu, T. R. Jow. Understanding Formation of Solid Electrolyte Interface Film on LiMn2O4 Electrode, Journal of the Electrochemical Society, 149(12), 1521(2002)
13 XIE Hui, TANG Zhiyuan, LI Zhongyan, LiODFB: An unique lithium salt for lithium ion battery, New Chemical Materials, 35(6), 39(2007)
13 (谢辉, 唐致远, 李中延, 可用于锂离子电池的新型锂盐: LiODFB, 化工新型材料, 35(6), 39(2007))
14 DENG Lingfeng, CHEN Hong, Electrochemical properties and synthesis of LiBC2O4F2 for lithium batteries, Chinese Journal of Power Sources, 34(3), 237(2010)
14 (邓凌峰, 陈 洪, 锂离子电池电解质LiBC2O4F2的合成与电化学性能, 电源技术, 34(3), 237(2010))
15 Jie Li, Keyu Xie, Yanqing Lai, Zhi’an Zhang, Fanqun Li, Xin Hao, Xujie Chen, Yexiang Liu, Lithium oxalyldi?uoroborate/carbonate electrolytes for LiFePO4/arti?cial graphite lithium-ion cells, Journal of Power Source, 195(16), 5344(2010)
16 Zhou Hongming, Fang Zhenqi, Li Jian. LiPF6 and lithium difluoro(oxalato) borate/ethylene carbonate + dimethyl carbonate + ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode, Journal of Power Sources, 230, 148(2013)
17 FU Maohua, HUANG Kelong, LIU Suqin, LIU Jiansheng, LI Yongkun, Effect of lithium difluoro (oxalato) borate on the high-temperature performance of LiFePO4/Graphite batteries, Acta Physico-Chimica Sinica, 25(10), 1985(2009)
17 (付茂华, 黄可龙, 刘素琴, 刘建生, 李永坤, 二氟二草酸硼酸锂对LiFePO4/石墨电池高温性能的影响, 物理化学学报, 25(10), 1985(2009))
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[4] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[7] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[8] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[9] 于佳莹, 杨希祥, 战德松, 杨柯, 任玲, 王敬人, 徐嘉蔚. Ti-Zr-Cu合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2021, 35(11): 873-880.
[10] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[11] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[12] 杨琴, 赵卫杰, 赵娜, 王若迪, 陈诚. 微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能[J]. 材料研究学报, 2020, 34(9): 691-696.
[13] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[14] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[15] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.