Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 385-391    DOI: 10.11901/1005.3093.2019.568
  研究论文 本期目录 | 过刊浏览 |
高容量锂电池负极材料TiNb2O7的合成及其机理
谢礼兰(), 杨冬升, 凌静
贵州师范大学材料与建筑工程学院 贵阳 550001
Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7
XIE Lilan(), YANG Dongsheng, LING Jing
School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550001, China
引用本文:

谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
Lilan XIE, Dongsheng YANG, Jing LING. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. Chinese Journal of Materials Research, 2020, 34(5): 385-391.

全文: PDF(4315 KB)   HTML
摘要: 

将TiNb2O7的前驱体在不同温度(400℃、800℃、900℃、1000℃和1100℃)煅烧,用固相合成法制备TiNb2O7负极材料并对其样品进行了TG-DSC、XRD和SEM表征和电化学性能测试。结果表明:在900℃煅烧前驱体,锐钛矿与Nb2O5反应的主要产物为Ti2Nb10O29。Ti2Nb10O29与金红石反应生成了TiNb2O7,生成纯单斜相TiNb2O7的最佳条件为在1100℃煅烧6 h。TiNb2O7负极材料在0.2C电流密度时初始容量为278.4 mAh/g,初始库伦效率为82.9%。TiNb2O7具有良好的倍率容量,在1C循环100次后容量保持率为89%。

关键词 材料合成与加工工艺锂离子电池固相法TiNb2O7电化学性能    
Abstract

The precursor of TiNb2O7 is prepared via solid-phase synthesis with anatase and Nb2O5 as raw materials and then calcinated at 400℃, 800℃, 900℃, 1000℃ and 1100℃ respectively in air to prepare TiNb2O7 as electrode materials. The prepared materials are characterized by means of thermo-gravimetric analyzer, differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical test. The results show that the main reaction products of anatase and Nb2O5 at 900℃ is Ti2Nb10O29. TiNb2O7 is obtained by the reaction of Ti2Nb10O29 and rutile. The optimum calcination condition of pure monoclinic TiNb2O7 is 1100℃ for 8 h. TiNb2O7 anode material has an initial capacity of 278.4 mAh/g at 0.2C and the initial coulombic efficiency is 82.9%. In the meantime, TiNb2O7 has a good rate capacity, which can still reach 89% after 100 cycles at 1C rate.

Key wordssynthesizing and processing technics for materials    lithium-ion battery    solid-phase synthesis    TiNb2O7    electrochemical performance
收稿日期: 2019-12-05     
ZTFLH:  TM912.9  
基金资助:贵州省科技厅-贵州师范大学联合基金(LKS[2009]30)
作者简介: 谢礼兰,女,1979年生,博士
图1  TiNb2O7前驱体的TG-DSC曲线
图2  在不同温度合成的TiNb2O7的XRD图谱
Sintering parameterRaw material400℃-8 h800℃-8 h900℃-8 h1000℃-8 h1100℃-8 h
Anatase23.10%*27.38%22.16%16.84%-0
Rutile---4.18%6.13%0
Nb2O576.90%*72.62%3.86%--0
Ti2Nb10O29--67.42%71.51%43.12%0
TiNb2O7--6.56%7.47%50.75%100%
Rwp%10.57%14.50%15.68%12.87%15.03%
表1  在不同温度合成的样品的XRD无标定量分析数据
图3  在900℃保温8 h和在1100℃保温8 h样品的X射线Rietveld精修图谱
Compounds/CrystalLattice parameters (nm)

JCPDS

file no.

structure (space group)This workLiterature[23]
TiNb2O7monoclinic(C2/m(12))a = 2.0376a = 2.035177-1374
b =0.3802b = 0.3801
c = 1.1894c = 1.1882
β (°) =120.19β (°) =120.19

Ti2Nb10O29monoclinic

(A2/m(12))

a = 1.5599a = 1.55772-0159
b = 0.3815b = 0.3814
c = 2.0534c = 2.054
β (°) = 113.683β (°) = 113.683
表2  TiNb2O7 和 Ti2Nb10O29的晶格参数
图4  前驱体、在不同温度煅烧的TiNb2O7粉末的扫描电子显微镜图像及其相应的放大图像
图5  TiNb2O7电极的0.8-2.5 V电化学性能
[1] Yan X M, Feng G Z, Huang X. Research progress of preparation and application of cathode material for lithium ion battery [J]. New Chem. Mater., 2019, 47(07): 22
[1] (严旭明, 冯光炷, 黄雪. 锂离子电池负极材料的制备及应用进展 [J]. 化工新型材料, 2019, 47(07): 22)
[2] Huang J J, Li Z K, Yang S Z, et al. Research progress of composite anode materials with high-capacity for lithium-ion batteries [J]. Carbon Tech., 2019, 38(03): 1
[2] (黄家骏, 李子坤, 杨书展等. 锂离子电池用高容量复合负极材料的研究进展 [J]. 炭素技术, 2019, 38(03): 1)
[3] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective [J]. J. Am. Chem. Soc., 2013, 135(4): 1167
[4] Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practical lithium battery materials [J]. J. Mater. Chem., 2011, 21(27): 9938
[5] Chen Z H, Belharouak I, Sun Y K, et al. Titanium-based anode materials for safe lithium-ion batteries [J]. Adv. Funct. Mater., 2013, 23(8): 959
[6] Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells [J]. J. Electrochem. Soc., 1995, 142(5): 1431
[7] Armand M, Tarascon J M. Building better batteries [J]. Nature., 2008, 451(7179): 652
[8] Zhu G N, Wang Y G, Xia Y Y. Ti-based compounds an anode materials for Li-ion batteries [J]. Energy Environ. Sci., 2012, (5): 6652
[9] Li N, Chen Z P, Ren W C, et al. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates [J]. Proc. Nat. Acad. Sci., 2012, 109(43): 17360
[10] Ganapathy S,Wagemaker M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion [J]. ACS Nano., 2012, 6(10): 8702
[11] Guo J, Zuo W, Cai Y, et al. A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature [J]. J. Mater. Chem. A., 2015, (3): 4938
[12] Wu X Y, Miao J, Han W Z, et al. Investigation on Ti2Nb10O29 anode material for lithium-ion batteries [J]. Electrochem. Commun., 2012, (25): 39
[13] Han J T, Huang Y H, John B, et al. New anode framework for rechargeable lithium batteries [J]. Chem. Mater., 2011, (23): 2027
[14] Wadsley A D. Mixed Oxides of titanium and niobium.Ⅱ. the crystal structures of the dimorphic forms of Ti2Nb10O29 [J]. Acta Crystallogr., 1961, (14): 664
[15] Wang W L, Oh Byeong-Yun, Park Ju-Young, et al. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability [J]. J. Power Sources., 2015, 272
[16] Liu G Y, Jin B, Zhang R X, et al. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries [J]. Int. J. Hydrogen Energy., 2016, (41): 14807
[17] Tang K, Mu X K, Peter A, et al. “Nano-Pearl-String” TiNb2O7 as Anodes for Rechargeable Lithium Batteries [J]. Adv. Energy Mater., 2013, (3): 49
[18] Cheng Q S, Liang J W, Lin N, et al. Porous TiNb2O7 Nanospheres as ultra Long-life and High-power Anodes for Lithium-ion Batteries [J]. Electrochimica Acta, 2015, (176): 456
[19] Yang C, Lin C F, Lin S W, et,al. Cu0.02Ti0.94Nb2.04O7:an advanced anode material for lithium-ion batteries of electric vehicles [J]. J. Power Sources., 2016, (328): 336
[20] Ram Avtar Jat, Samui Pradeep, Gupta N. K., et al. Synthesis, characterization and heat capacities of ternary oxides in the Ti-Nb-O system [J]. Thermochim. Acta., 2014: 31
[21] Lu X, Jian Z L, Fang Z, et al. Atomic-scale investigation on lithium storage mechanism in TiNb2O7 [J]. Energy Environ. Sci., 2011, (4): 2638
[22] Han J T, John B. Goodenough. 3-V Full Cell Performance of Anode Framework TiNb2O7/Spinel LiNi0.5Mn1.5O4 [J]. Chem. Mater., 2011, (23): 3404
[23] Wu E.. POWD-an Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.2, School of Physical Sciences, Flinders University of South Australia, Bedford Park, Austarlia, 1995
[1] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[2] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[4] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[5] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[6] 赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
[7] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] 肖揽, 于文华, 黄昊, 吴爱民, 靳晓哲. 锂离子电池负极材料TiS3 纳米片的制备和性能[J]. 材料研究学报, 2022, 36(11): 821-828.
[9] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[10] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[11] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[12] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[13] 李玲芳, 曾斌, 原志朋, 范长岭. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究[J]. 材料研究学报, 2020, 34(8): 591-598.
[14] 巩桂芬,李泽,王磊,崔巍巍. 静电纺TiO2改性联苯型聚酰亚胺锂离子电池隔膜[J]. 材料研究学报, 2020, 34(3): 169-175.
[15] 马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.