Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (8): 561-566    DOI: 10.11901/1005.3093.2014.136
  本期目录 | 过刊浏览 |
多壁碳纳米管改性氰酸酯/环氧树脂基纳米复合材料的力学性能*
李静文1,2,吴智雄1,黄传军1,李来风1()
1. 中国科学院理化技术研究所低温工程学重点实验室 北京 100190
2. 中国科学院大学 北京 100049
Mechanical Properties of Cyanate Ester/Epoxy Resins Reinforced with Functionalized Multi-wall Carbon Nanotubes
Jingwen LI1,2,Zhixiong WU1,Chuanjun HUANG1,Laifeng LI1,**()
1. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
2. University of Chinese Academy of Sciences, Beijing 100049
引用本文:

李静文,吴智雄,黄传军,李来风. 多壁碳纳米管改性氰酸酯/环氧树脂基纳米复合材料的力学性能*[J]. 材料研究学报, 2014, 28(8): 561-566.
Jingwen LI, Zhixiong WU, Chuanjun HUANG, Laifeng LI. Mechanical Properties of Cyanate Ester/Epoxy Resins Reinforced with Functionalized Multi-wall Carbon Nanotubes[J]. Chinese Journal of Materials Research, 2014, 28(8): 561-566.

全文: PDF(1345 KB)   HTML
摘要: 

用强酸氧化法与等离子体镀膜法分别对原始多壁碳纳米管(MWCNTs)进行表面修饰, 制备了MWCNTs改性氰酸酯/环氧树脂基纳米复合材料。对复合材料的断裂面进行SEM分析, 研究了表面处理方法对复合材料室温及低温力学性能的影响。结果表明, 经等离子体镀膜表面修饰后的MWCNT在基体中分散更为均匀, 与基体的界面结合力更强。经等离子体镀膜表面改性后的MWCNTs复合材料, 当MWCNTs质量分数为0.3%时, 其室温及低温拉伸强度、弹性模量和冲击强度较纯氰酸酯/环氧树脂基体均有不同程度的提高。

关键词 复合材料碳纳米管力学性能    
Abstract

Chemical oxidation and plasma polymerization were employed to functionalize the surfaces of multi-wall carbon nanotubes (MWCNTs). Then MWCNTs reinforced cyanate ester/epoxy resin nanocomposites were manufactured. The effect of the two functionalization processes on mechanical properties of the nanocomposite was investigated in terms of tensile test at room and cryogenic temperatures and observation of their fracture surfaces with SEM. Results show that the plasma polymerized MWCNTs (plasma-MWCNTs) may be dispersed more homogenously in the matrix and possess stronger interfacial bonding with the resin in comparison with the chemical oxidized ones. With addition of 0.3%(mass fraction) plasma-MWCNTs, the tensile strength, tensile modulus and impact strength of nanocompoistes at room and cryogenic temperature were simultaneously improved compared with the pure cyanate ester/epoxy resin matrix.

Key wordscomposites    carbon nanotubes    mechanical properties
收稿日期: 2014-03-24     
基金资助:* 国家自然科学基金51377156, 国家磁约束核聚变能发展研究专项2011GB112003及中国科学院低温工程学重点实验室青年科技创新CRYOQN201303资助项目。
图1  不同MWCNTs表面XPS谱、原始MWCNTs表面 C1s XPS谱、MWCNTs-COOH表面C1s XPS谱以及MWCNTs-plasma表面C1s XPS谱
Sample Atomic concentration /%
C 1s O 1s
As-received MWCNTs 98.32 1.68
MWCNTs-COOH 97.17 2.83
MWCNTs-plasma 93.24 6.67
表1  C元素及O元素含量XPS测定结果
图2  不同MWCNT/CE/EP断裂面SEM像
图3  MWCNT/CE/EP纳米复合材料在室温和77K拉伸强度和拉伸模量
图4  室温及77 K时MWCNT/CE/EP纳米复合材料冲击强度
1 S. Iijima,Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
2 R. S. Ruoff, D. C. Lorents,Mechanical and thermal properties of carbon nanotubes, Carbon, 33(7), 925(1995)
3 E. T. Thostenson, Z. Ren, T.-W. Chou,Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, 61(13), 1899(2001)
4 S. Niyogi, M. Hamon, D. Perea, C. Kang, B. Zhao, S. Pal, A. Wyant, M. Itkis, R. Haddon,Ultrasonic dispersions of single-walled carbon nanotubes, Journal of Physical Chemistry B, 107(34), 8799(2003)
5 X. Gong, J. Liu, S. Baskaran, R. D. Voise, J. S. Young,Surfactant-assisted processing of carbon nanotube/polymer composites, Chemistry of Materials, 12(4), 1049(2000)
6 M. K. V. Datsyuk, K. Papagelis,Chemical oxidation of multiwalled carbon nanotubes, Carbon, (46), 833(2008)
7 S. Ruan, P. Gao, X. Yang, T. Yu,Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes, Polymer, 44(19), 5643(2003)
8 D. W. Steuerman, A. Star, R. Narizzano, H. Choi, R. S. Ries, C. Nicolini, J. F. Stoddart, J. R. Heath,Interactions between conjugated polymers and single-walled carbon nanotubes, Journal of Physical Chemistry B, 106(12), 3124(2002)
9 R. Prokopec, K. Humer, R. Maix, H. Fillunger, H. Weber,Mechanical strength of various cyanate ester/epoxy insulation systems after fast neutron irradiation to the ITER design fluence and beyond, Fusion Engineering and Design, 82(5), 1508(2007)
10 R. Prokopec, K. Humer, R.K. Maix, H. Fillunger, H.W. Weber,Influence of various catalysts on the radiation resistance and the mechanical properties of cyanate ester/epoxy insulation systems, Fusion Engineering and Design, 84(7), 1544(2009)
11 J. Wang, G. Liang,H Yan, S. He, Mechanical and thermal properties of functionalized multiwalled carbon nanotubes/cyanate ester composite, Polymer Engineering & Science, 49(4), 680(2009)
12 C. H. Tseng, C. C. Wang, C. Y. Chen,Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites, Chemistry of Materials, 19(2), 308(2007)
13 A. Bell,The mechanism and kinetics of plasma polymerization, Plasma Chemistry III, 43(1980)
14 I. D. Rosca, F. Watari, M. Uo, T. Akasaka,Oxidation of multiwalled carbon nanotubes by nitric acid, Carbon, 43(15), 3124(2005)
15 F. Sawa, S. Nishijima, T. Okada,Molecular design of an epoxy for cryogenic temperatures, Cryogenics, 35(11), 767(1995)
16 M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, G. Thompson,The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite, Polymer, 48(19), 5662(2007)
17 M. Hussain, A. Nakahira, S. Nishijima, K. Niihara,Evaluation of mechanical behavior of CFRC transverse to the fiber direction at room and cryogenic temperature, Composites Part A, 31(2), 173(2000)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.