Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (7): 555-560    DOI: 10.11901/1005.3093.2014.118
  本期目录 | 过刊浏览 |
聚三唑/碳纳米管复合材料的制备与性能研究*
张存超,万里强(),许建文,郭冰,黄发荣
华东理工大学材料科学与工程学院 特种功能高分子材料及相关技术教育部重点实验室 上海 200237
Preparation and Characterization of Polytriazole/Carbon Nanotube Composites
Cunchao ZHANG,Liqiang WAN(),Jianwen XU,Bing GUO,Farong HUANG
Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237
引用本文:

张存超,万里强,许建文,郭冰,黄发荣. 聚三唑/碳纳米管复合材料的制备与性能研究*[J]. 材料研究学报, 2014, 28(7): 555-560.
Cunchao ZHANG, Liqiang WAN, Jianwen XU, Bing GUO, Farong HUANG. Preparation and Characterization of Polytriazole/Carbon Nanotube Composites[J]. Chinese Journal of Materials Research, 2014, 28(7): 555-560.

全文: PDF(2418 KB)   HTML
摘要: 

将叠氮基与碳纳米管(CNT)反应, 制备叠氮化碳纳米管(ACNT), 用FTIR、XPS等手段证明碳纳米管实现了叠氮化; 借助超声波的作用使ACNT均匀分散于单体中, 然后用原位聚合方法制备了聚三唑/碳纳米管(PTA/ACNT)复合材料。用透射电镜观察ACNT在基体树脂中的分散状况和复合材料的微观结构, 研究了ACNT的添加分数对PTA/ACNT复合材料玻璃化温度(Tg)、热稳定性(Td5)和导热系数(λ)的影响。 结果表明: 与PTA纯树脂相比, 当ACNT添加分数为1.0% (质量分数, 下同)时, 复合材料的Tg提高了33℃, 在氮气中Td5提高了15℃, 在空气中Td5提高了8℃; 当ACNT添加分数为5.0%时, 复合材料30℃的λ提高了45%, 150℃的λ提高了30%。

关键词 复合材料聚三唑碳纳米管叠氮化热学性能    
Abstract

Azido-carbon nanotube (ACNT) was prepared by the reaction of azide group with carbon nanotube (CNT). The azidation of CNT was proved by FTIR, XPS and so on. Under the effect of ultrasonic wave, ACNT was uniformly dispersed into monomers of polytriazole (PTA), and then PTA/ACNT composites were prepared via in situ polymerization. The dispersion status of ACNT in the matrix resin and the microstructure of PTA/ACNT composites were observed by TEM. The influence of ACNT addition on glass transition temperature (Tg), thermostability parameter (Td5) and thermal conductivity (λ) of PTA/ACNT composites were also examined. The results showed that in comparison with the blank PTA resin, Tg increased 33℃, Td5 increased 15℃ in nitrogen atmosphere and 8℃ in air for the PTA/ACNT composite with 1.0% ACNT; while λ increased by 45% at 30℃ and 30% at 150℃ for the PTA/ACNT composite with 5.0% ACNT.

Key wordscomposites    polytriazole    CNT    azidation    thermal properties
收稿日期: 2014-03-13     
基金资助:* 上海市重点学科B502资助项目。
图1  PTA/ACNT复合材料制备流程示意图
图2  PCNT和ACNT的红外图谱
Sample C1s /% O1s /% N1s /%
Pure CNT 97.61 2.39 0
Azido CNT 85.85 3.47 10.68
  
图3  ACNT表面的XPS N1s谱
图4  A2/B4混合物与A2/B4/ACNT混合物的DSC曲线
图5  ACNT含量对PTA/ACNT复合材料Tg的影响
ACNT loading/% 0 0.1 0.3 0.5 0.8 1.0 1.5 2.0 3.0 4.0 5.0
Tg/℃ 210 233 235 235 236 243 237 234 234 235 235
  
图6  PTA/ACNT复合材料的TEM像
图7  PTA/ACNT复合材料与PTA空气气氛热失重曲线的对比
图8  PTA/ACNT复合材料与PTA氮气气氛热失重曲线的对比
Sample/ condition PTA/air PTA/N2 PTA/ACNT/air PTA/ACNT/N2
Td5 /℃ 303 315 315 330
表3  PTA树脂与PTA/ACNT复合材料TGA数据对比
ACNT loading/% 0 1.0 2.0 3.0 4.0 5.0
30℃ 0.206 0.218 0.255 0.261 0.287 0.300
150℃ 0.254 0.261 0.280 0.280 0.301 0.329
  
图9  ACNT添加量对PTA/ACNT复合材料导热系数的影响
1 S. Iijima,Helical microtubules of graphitic carbon, Nature, 345(7), 56(1991)
2 P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth,Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science, 265(5176), 1212(1994)
3 J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun'ko,Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, 44(9), 1624(2006)
4 WANG Zhimiao,ZHANG Xingxiang, WANG Xuechen, BAI Shihe, QIAO Zhijun, Preparation and properties of melt-blended carboxyl multi-walled carbon nanotubes/PA66 composite fibers, Acta Materiae Compositae Sinica, 28(2), 16(2011)
4 (王志苗, 张兴祥, 王学晨, 白世河, 乔志军, 熔融共混法制备羧基化多壁碳纳米管/PA66复合纤维及其性能, 复合材料学报, 28(2), 16(2011))
5 Z. ?pitalsky, L. Matějka, M. ?louf, E. N. Konyushenko, J. Ková?ová, J. Zemek, J. Kotek,Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites, Polymer Composites, 30(10), 1378(2009)
6 E. S. Choi, J. S. Brooks, D. L. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, K. Dahmen,Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing, Journal of Applied Physics, 94(9), 6034(2003)
7 A. Allaoui,NE. El. Bounia, How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?–a review, Express Polymer Letters, 3(9), 588(2009)
8 A. K. Barick, D. K. Tripathy,Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites, Materials Science and Engineering: B, 176(18), 1435(2011)
9 Z. Han, A. Fina,Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Progress in polymer science, 36(7), 914(2011)
10 M. G. Baldwin, K. E Johnson, J. A. Lovinger, C. O. Paker,1, 3-Dipolar cycloaddition polymerization of compounds containing both azido and acetylene groups, Journal of Polymer Science Part B: Polymer Letters, 5(9), 803(1967)
11 HUANG Farong, ZHOU Yan, Advanced Polymer Matrix Composites (Beijing, Chemical Industry Press, 1999)p.14
11 (黄发荣, 周 燕, 先进树脂基复合材料(北京, 化学工业出版社, 2008)p.14))
12 LUO Yonghong,HU Yanhong, WAN Liqiang, XUE Lian, ZHOU Wei, HUANG Farong, SHEN Xuening, QI Huimin, DU Lei, CHEN Xiangbao, Cure kinetics study of the polymerization of N, N, N', N' -tetrapropargyl-p, p'-diamino diphenyl methane with 1, 1'-bezidomethyl-4, 4'-biphenyl, Chinese Journal of Materials Research, 27(1), 170(2006)
12 (罗永红, 扈艳红, 万里强, 薛 莲, 周 围, 黄发荣, 沈学宁, 齐会民, 杜磊, 陈祥宝, N, N, N',N'-四炔丙基-4, 4'-二氨基-二苯甲烷与 4, 4'-联苯二苄叠氮固化动力学研究, 高等学校化学学报, 27(1), 170(2006))
13 WAN Liqiang,LUO Yonghong, XUE Lian, TIAN Jianjun, HU Yanhong, QI Huimin, SHEN Xuening, HUANG Farong, DU Lei, CHEN Xiangbao, Preparation and properties of a novel polytriazole resin, Journal of Applied Polymer Science, 104(2), 1038(2007)
14 TIAN Jianjun,WAN Liqiang, HUANG Jianzhi, HU Yanhong, DU Lei, Synthesis and characterization of a novel polytriazole resin with low-temperature curing character, Polymers for Advanced Technologies, 18(7), 556(2007)
15 WAN Liqiang,LUO Yonghong, HU Yanhong, HUANG Farong, DU Lei, Synthesis and characterization of a novel polymer containing 1, 2, 3-triazole, Polymer Preprints, 46(2), 1014(2005)
16 LV Li,YI Wei, ZHANG Dianlin, 3ω method for specific heat and thermal conductivity measurements, Review of Scientific Instruments, 72(7), 2996(2001)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.