Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (8): 610-614    DOI: 10.11901/1005.3093.2013.859
  本期目录 | 过刊浏览 |
TiB2基RuO2+TiO2涂层的电催化性能*
王福,竺培显(),周生刚,曹勇
昆明理工大学材料科学与工程学院 昆明 650093
Electrocatalytic Properties of RuO2-TiO2 and TiB2 Coated Ti Based Anodes
Fu WANG,Peixian ZHU(),Shenggang ZHOU,Yong CAO
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
引用本文:

王福,竺培显,周生刚,曹勇. TiB2基RuO2+TiO2涂层的电催化性能*[J]. 材料研究学报, 2014, 28(8): 610-614.
Fu WANG, Peixian ZHU, Shenggang ZHOU, Yong CAO. Electrocatalytic Properties of RuO2-TiO2 and TiB2 Coated Ti Based Anodes[J]. Chinese Journal of Materials Research, 2014, 28(8): 610-614.

全文: PDF(2469 KB)   HTML
摘要: 

用磁控溅射法在钛基体表面溅射TiB2中间层, 以此为基体用热分解法制备了(Ru, Ti)氧化物涂层钛电极, 用SEM、XRD、电化学工作站等手段对样品的性能和结构进行了表征。结果表明, 含TiB2中间层的钛阳极表面涂层具有非连续状裂纹结构, 钛基体和氧化物涂层的界面呈现紧密结合的状态, 其电催化析氯性能优于传统钛阳极。选用TiB2中间层作为催化电极的载体, 可改善基体和氧化物涂层的结合, 延缓涂层的脱落, 可避免基体和涂层间生成TiO2电阻膜, 延缓涂层的失效; 加入TiB2中间层可降低内阻, 改善电子的传输能力, 降低析氯电位, 提高电极的催化活性和节能降耗。

关键词 复合材料Ti/TiB2基体电极材料RuO2-TiO2 涂层热分解法电化学性能    
Abstract

Ti-based anodes with a top layer RuO2-TiO2 oxides mixture and an inter-layer TiB2 were prepared by two step processes, i.e. first the TiB2 film was deposited on Ti-based anodes by means of magnetron sputtering and then the top layer RuO2-TiO2 oxides mixture was further deposited by a thermal decomposition process. The microstructure and phase constituent of the coatings were characterized by means of SEM and XRD, and the electrochemical properties of the anodes were evaluated by the polarization curves. The results show that the interlayer TiB2 plays important role in suppressing the formation of the cross cracks of the RuO2-TiO2 layer and, facilitating the adhesion of the top layer to the substrate, therefore the RuO2-TiO2 and TiB2 coated Ti-anodes exhibit better electrocatalytic properties rather than the only RuO2-TiO2 coated ones. In the meanwhile, the TiB2 interlayer can suppress the occurrence of a TiO2 film at the interface coating/substrate thus prolongs the life time of Ti-anodes. Besides, the inducing of the TiB2 interlayer can reduce the potential of chlorine evolution, and thereby enhance the current efficiency of the Ti-anodes effectively.

Key wordsmatellic materials    Ti/TiB2 substrates electrode materials    RuO2-TiO2 coatings    thermal decomposition method    electrochemical properties
收稿日期: 2013-11-11     
基金资助:* 国家自然科学基金51264025和国家高技术研究发展计划项目2009AA03Z512资助。
图1  烧结温度为430℃所得Ru-Ti涂层钛阳极的SEM像
图2  烧结温度为430℃引入中间层后试样结合界面的SEM像
图3  烧结温度为430℃所得TiB2/RuO2-TiO2涂层的表面能谱图和界面SEM像
图4  烧结温度为430℃所得TiB2/RuO2+TiO2涂层阳极的X射线衍射图谱
图5  热分解温度为430℃钛基RuO2-TiO2涂层的电极阳极极化曲线
1 K. Fu Jimura, K. Lzumiya, A. Kawaashima,Anodically deposited manganese-molybdenum oxide anode with high selectivity for evolving oxygen in electrolysis of seawater, Journal of Applied Electrochemistry, 29(6), 765(1999)
2 ZHANG Zhaoxian,Research and application of titanium anodes, Rare Metals Letters, 23(4), 1(2004)
2 (张招贤, 涂层钛阳极的研究与应用, 稀有金属快报, 23(4), 1(2004))
3 C. H. Yang, C. C. Lee, T. C. Wen,Hypochlorite generation on Ru-Pt binary oxide for treatment of dye wastewater, Journal of Applied Electrochemistry, 30(9), 1043(2000)
4 M. Morimitsu, H. Tamura, M. Matsunaga,Polarization behavior and lifetime of IrO2-Ta2O5-SnO2/Ti anodes in p-phenolsulfonic acid solutions for tin plating, Journal of Applied Electrochemistry, 30(4), 511(2000)
5 CHEN Kangning, Metal Anodes (Shanghai:East China Nomal University Press, 1989)P.231
5 (陈康宁, 金属阳极(上海: 华东师范出版社, 1989)P.231)
6 ZHANG Zhaoxian, ZHAO Guopeng, LUO Xiaojun, Introduction to Titanium Electrodics (Beijing:Metallurgy Industry Press, 2008)P.37
6 (张招贤, 赵国鹏, 罗小军, 钛电极学导论(北京:冶金工业出版社, 2008)P.37)
7 HU Jiming,MENG Huiming, ZHANG Jianqing, Aging performances of Ti based IrO2+ Ta2O5 anodes in sulfuric acid during electrolysis, Acta Phys. Chim, 18(1), 14(2002)
7 (胡吉明, 孟慧民, 张鉴清, Ti基IrO2+Ta2O5阳极在H2SO4溶液中的电解时效行为, 物理化学学报, 18(1), 14(2002))
8 TAO Zichun,LUO Qifu, PAN Jianyue, General situation of study on the Ti anodes coating with IrO2, Jouranl of Materials Science and Engineering, 21(1), 138(2003)
8 (陶自春, 罗启富, 潘建跃, 铱系涂层钛阳极的研究进展, 材料科学与工程学报, 21(1), 138-142(2003))
9 TAO Zichun,PAN Jianyue, LUO Qifu, Study on preparations of Pt inter-media and effects of the inter-media on the performances of Ti-substrate IrO2-Ta2O5 coating anodes, Jouranl of Materials Science and Engineering, 22(2), 240(2004)
9 (陶自春, 潘建跃, 罗启富, 铂中间层的制备及对铱钽涂层钛阳极性能的影响, 材料科学与工程学报, 22(2), 240(2004))
10 JIANG Junfeng,XU Haibo, WANG Tingyong, WANG Jia, XU Likun, CHENG Guang, Study on electrocatalytical properties of TiN based IrO2-Ta2O5 coating anodes, Rare Metal Materials and Engineering, 36(2), 344(2007)
10 (姜俊峰, 徐海波, 王廷勇, 王 佳, 许立坤, 成光, TiN基IrO2-Ta2O5涂层电催化性能研究, 稀有金属材料与工程, 36(2), 344(2007))
11 ZHANG Zhaoxian,TANG Renheng, ZHANG Jianhua, Study on electrochemical performance of the titanium electrode coated with IrO2-Ta2O5, Journal of Guang Dong Non-ferrous Metals, 12(2), 102(2002)
11 (张招贤, 唐仁衡, 张建华, IrO2-Ta2O5涂层钛阳极的研究和应用, 广东有色金属学报, 12(2), 102(2002))
12 DAN Jianming,CHEN Kangning, Investigation on factors influencing the surface morphology and electrochemical properties of electrodes, Chlor-Alkali Industry, 11, 11(2000)
12 (但建明, 陈康宁, 影响电极表面形态及电性能因素的分析, 氯碱工业, 11, 11(2000))
13 XIA Mujian,DING Hongyan, ZHOU Guanghong, ZHANG Yue, Improvement of adhesion properties of TiB2 films on 316L stainless steel by Ti interlayer films, Transactions of Nonferrous Metals Society of China, 23, 2960(2013)
13 (夏木建, 丁红燕, 周广宏, 章 跃, Ti层对316L不锈钢表面TiB2薄膜结合力的影响, 中国有色金属学报, 23, 2960(2013))
14 J. Qi, K. H. Lai, C. S. Lee,Mechanical properties of a-C:H multilayer films, Diamond Relat. Mater., 10, 1833(2001)
15 MinorsIto,Yasushi, Murakami, Hayato Kaji, Sur-face characterization of RuO2-SnO2 coated titanium electrodes, Electrochem. Soc., 143(1), 34(1996)
16 GU Jun,SUI Sheng, LI Guangqiang, SUI Zhitong, Catalytic activities of La1-xCaxFe1-yCoyO3 for oxygen reduction, Journal of Inorganic Materials, 14(4), 618(1999)
16 (顾 军, 隋 升, 李光强, 隋智通, La1-xCaxFe1-yCoyO3对氧气还原的催化活性, 无机材料学报, 14(4), 618(1999))
17 Kristof Janos,Szilagyi tamas, Horvaht Erzsbet, Investigation of IrO2/Ta2O5 thin film evolution, Themrochemical Acta, 413, 93(2004)
18 C. P. D. Pauli, S. Trasatti,Electrochemical surface characterization of IrO2+SnO2 mixed oxide electrocatalysis, Journal of Electroanalytical Chemistry, 396(1-2), 161(1995)
19 HOU Zhiqiang,HAN Yan, Investigation on Ru-Ti-Ir-Sn oxide coated electrodes, Development and Application of Materials, 17(1), 28(2002)
19 (侯志强, 韩 严, Ru-Ti-Ir-Sn氧化物涂层阳极的研究, 材料开发与应用, 17(1), 28(2002))
20 JI Hong,ZHOU Derui, ZHOU Yuhong, Electrocatalytic activity of titanium based RuO2-CeO2-SnO2 coating anodes, The Chinese Journal of Nonferrous Metals, 13(6), 1551(2003)
20 (纪 红, 周德瑞, 周育红.Ti基RuO2-CeO2-SnO2涂层阳极的电催化性能, 中国有色金属学报, 13(6), 1551(2003))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.