Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (2): 121-125    DOI: 10.11901/1005.3093.2013.713
  本期目录 | 过刊浏览 |
可再生CH/PA阻燃涂层对剑麻纤维素微晶的改性*
曾思华,韦春(),谭玉园,王武,付俊,刘红霞,覃爱苗
桂林理工大学材料科学与工程学院 桂林 541004
Surface Modification of Sisal Fiber Cellulose Microcrystallites by a Renewable Flame-Retardant CH/PA Coating
Sihua ZENG,Chun WEI(),Yuyuan TAN,Wu WANG,Jun FU,Hongxia LIU,Aimiao QIN
College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004
引用本文:

曾思华,韦春,谭玉园,王武,付俊,刘红霞,覃爱苗. 可再生CH/PA阻燃涂层对剑麻纤维素微晶的改性*[J]. 材料研究学报, 2014, 28(2): 121-125.
Sihua ZENG, Chun WEI, Yuyuan TAN, Wu WANG, Jun FU, Hongxia LIU, Aimiao QIN. Surface Modification of Sisal Fiber Cellulose Microcrystallites by a Renewable Flame-Retardant CH/PA Coating[J]. Chinese Journal of Materials Research, 2014, 28(2): 121-125.

全文: PDF(3079 KB)   HTML
摘要: 

采用层层自组方法在剑麻纤维素微晶(SFCM)表面吸附天然聚电解质壳聚糖(CH)和植酸(PA), 构筑可再生CH/PA阻燃涂层, 用Zeta电位、热重分析(TGA)、场发射扫描电镜(FESEM)、垂直燃烧测试(VFT)和燃烧量热仪(MCC)等手段对复合材料进行了表征。Zeta电位和FESEM结果显示, 在CH和PA 吸附过程中电位正负交替变化, SFCM表面局部位置被一层凸起的涂层包覆。TGA和FESEM结果表明, 随着CH/PA层数的增加复合材料的初始分解温度由299℃降低至257℃, 残炭率由5.41%提高至37.64%, SFCM(CH/PA)5 的TG残炭物表面未出现螺旋状收缩, 纤维素形貌基本上不变; VFT结果显示, SFCM(CH/PA)5续燃时间(39 s)比纯SFCM(150 s)缩短了111 s。MCC结果表明, SFCM(CH/PA)5的热释放速率峰值(pkHRR)和热释放总量(Total HR)与纯SFCM相比分别减少70.6%和79.2%, 表明CH/PA涂层具有明显提高SFCM阻燃性能的作用。

关键词 复合材料层层自组SFCM(CH/PA)n热性能阻燃    
Abstract

Sisal fiber cellulose microcrystallines (SFCM) was coated with a fully renewable flame-retardant coatings consisted of cationic chitosan (CH) and anionic phytic acid (PA) via layer-by-layer (LbL) assembly. The structure and properties of the formed microcrystallite composite were characterized by Zeta potential, TGA, FESEM, VFT, and MCC methods. Zeta potential and FESEM results show that the surface charge of the coated cellulose microcrystallites reversed due to the adsorption of polyelectrolyte during multilayer deposition process. TG analysis show that the initial decomposition temperature of the composites decreased from 299℃ to 257℃ and the residues increased from 5.41% up to 37.34% with the increase of CH/PA film layers. Examination of SFCM(CH/PA)5 residues by FESEM revealed that the distinct fiber structure have been preserved and insignificant fiber shrinkage was observed.Vertical combustion testing (VFT)results show that for SFCM(CH/PA)5 , in comparison with the plain SFCM, the afterflame time is drops from 150 s down to 39 s; the pkHRR and total heat release (HR)exhibit great reduction of 70.6% and 79.2% respectively. These results demonstrate that the CH/PA coating has obviously improved the flame retardant performance of SFCM.

Key wordscomposite    LbL self-assembly    SFCM (CH/PA)n    thermal performance    flame-retardant
收稿日期: 2013-09-27     
基金资助:* 国家自然科学基金(21264005,21204013,51263005,51163003)和广西自然科学基金2013GXNSFDA019008 资助项目。
作者简介: 本文联系人: 韦 春, 教授
图1  CH和PA交替吸附过程中Zeta电位变化
图2  SFCM和SFCM(CH/PA)5的SEM像
图3  包覆不同层数CH/PA涂层的SFCM的热失重和温度关系曲线
图4  纯SFCM和SFCM(CH/PA)5残炭物的SEM像
图5  纯SFCM和SFCM(CH/PA)5垂直燃烧测试照片
1 LIU Peng,study on flame retardant functional cellulose materials, Master's degree paper, Taiyuan university of technology(2010)
1 (刘 鹏, 阻燃纤维素功能材料的研究, 硕士学位论文, 太原理工大学(2010)
2 Z. Y. Yang, X. W. Wang, D. P. Lei, B. Fei, J. H. Xin,A durable flame retardant for cellulosic fabrics, Polymer Degradation and Stability, 97, 2467(2012)
3 K. L. Xie, A. Q. Gao, Y. S. Zhang,Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen, Carbohydrate Polymers, 98, 706(2013)
4 Galina Laufer,Christopher Kirkland, Alexander B. Morgan, Jaime C. Grunlan, Intumescent multilayer nanocoating made with renewable polyelectrolytes for flame-retardant cotton, Biomacromolecules, 13, 2843(2012)
5 H. Wang, Y. M. Zhou, J. M. Ma, Y. Y. Zhou, H. Jiang,The effects of phytic acid on the maillard reaction and the formation of acrylamide, Food Chemistry, 141, 18(2013)
6 Y. Q. Chen, G. J. Wan, J. Wang, S. Zhao, Y. C. Zhao, N. Huang,Covalent immobilization of phytic acid on Mg by alkaline pre-treatment: Corrosion and degradation behavior in phosphate buffered saline, Corrosion Science, 75, 280(2013)
7 WU peng,TIAN jichun, WANG fengcheng, Present situation and aplication of phytic acid in cereal, Journal of the Chinese Cereals and Oils Association, 24(3), 137(2009)
7 (吴 澎, 田纪春, 王凤成, 谷物中植酸及其应用的研究进展, 中国粮油学报, 24(3), 137(2009)
8 Y. J. Wang, Alexandra S. Angelatos,Frank Carusol, Template synthesis of nanostructured materials via layer-by-layer assembly, Chem. Mater, 20, 848(2008)
9 Federico Carosio,Alessandro Di Blasio, Jenny Alongi, Giulio Malucelli, Green DNA-based flame retardant coatings assembled through layer by layer , Polymer, 54, 5148(2013)
10 S. Y. Liang, N. Matthias Neisius,Sabyasachi Gaan, Recent developments in flame retardant polymeric coatings, Progress in Organic Coatings, 76, 1642(2013)
11 Juan I. Moran, Vera A. Alvarez, Viviana P.Cyras,Analia Vazquez, Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose, 15, 149(2008)
12 A. R. Horrocks, B. K. Kandola, P. J. Davies, S. Zhang, S. A. Padbury,Developments in flame retardant textiles- a review, Polymer Degradation and Stability, 88, 3(2005)
13 DENG Yi,LIU Xiuhua, GAO Shangfei, Containing flame retardants for textile, Journal of Cellulose Science and Technology, 12(4), 57(2004)
13 (邓 义, 刘秀华, 高尚飞, 含磷阻燃剂在天然纤维织物阻燃中的应用, 纤维素科学与技术, 12(4), 57(2004))
14 H. Wouter, Salt of a melamin condensat ion product and a phosphorous-containing acid : US, 20030096946(2003)
15 T. Zhang, H. Q. Yan, M. Peng, L. L. Wang, H. L. Din, Z. P. Fang. Construction of flame retardant nanocoating on ramiefabric via layer-by-layer assembly of carbon nanotubeammonium polyphosphate, Nanoscale, 5, 3013(2013)
16 Y. C. Li,Sarah Mannen, Alexander B. Morgan, S. C. Chang, Y. H. Yang, Brian Condon, Jaime C. Grunlan, Intumescent all-polymer multilayer manocoating capable of extinguishing flame on fabric, Adv. Mater., 23, 3926(2011)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.