Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 380-386    DOI: 10.11901/1005.3093.2013.668
  本期目录 | 过刊浏览 |
碳纳米管填充不相容共混物的双PTC效应*
陆昶(),杨典,王睿,刘继纯,张玉清
河南科技大学化工与制药学院 高分子科学与纳米技术校重点实验室 洛阳 471003
Double PTC Effect of Carbon Nanotubes Filled Immiscible Polymer Blends
Chang LU(),Dian YANG,Rui WANG,Jichun LIU,Yuqing ZHANG
Key Lab of Polymer Science and Nanotechnology, Chemical Engineering &Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003
引用本文:

陆昶,杨典,王睿,刘继纯,张玉清. 碳纳米管填充不相容共混物的双PTC效应*[J]. 材料研究学报, 2014, 28(5): 380-386.
Chang LU, Dian YANG, Rui WANG, Jichun LIU, Yuqing ZHANG. Double PTC Effect of Carbon Nanotubes Filled Immiscible Polymer Blends[J]. Chinese Journal of Materials Research, 2014, 28(5): 380-386.

全文: PDF(4784 KB)   HTML
摘要: 

将碳纳米管(CNTs)、苯乙烯马来酸酐无规共聚物(SMA)改性后的CNTs分别与PS/PA6不相容共混体系熔融共混, 制备出PS/PA6/CNTs及PS/PA6/SMA-CNTs导电高分子复合材料, 并研究其PTC效应。结果表明, 对于PS/PA6/CNTs体系, CNTs选择性分布于PA6相, 体系的逾渗阈值为5%(质量分数), 且PTC效应不明显。对于PS/PA6/SMA-CNTs体系, 由于SMA的诱导作用, 使得CNTs分布于PS/PA6共混物相界面及PA6相, 导致体系的逾渗阈值降低至0.112%。PS/PA6/SMA-CNTs体系具有独特的“双PTC效应”, 且其形态结构影响PTC效应的形成机制。对于PA6相为分散相的体系, 其PTC效应是由于PS相的玻璃化转变及PA6相的熔融造成的。对于PS相为分散相及PS/PA6形成双连续相的体系, 其PTC效应是由于PA6相的熔融造成的。

关键词 复合材料导电高分子复合材料碳纳米管形态结构逾渗阈值PTC效应    
Abstract

Carbon nanotubes (CNTs) and poly(styrene-co-maleic anhydride) modified CNTs (SMA- CNTs) were blended with an immiscible system polystyrene/nylon6 (PS/PA6) to prepare conductive polymer composites PS/PA6/CNTs and PS/PA6/SMA-CNTs respectively. The PTC (positive temperature coefficient) effect of the composites was investigated. For PS/PA6/CNTs composites, CNTs were selectively distributed in PA6 phase; the percolation threshold was 5% (mass fraction) and a weak PTC effect was observed. For PS/PA6/SMA-CNTs composites, TEM results showed that CNTs were distributed both at the PS/PA6 interface and in PA6 phase due to the induced effect of SMA on CNTs. As a consequence, the percolation threshold decreased to 0.112%. Meanwhile, an especial double PTC effect was observed. The PTC effect was affected by the morphology of PS/PA6 blends. The emerge of PTC effect of the composites with dispersed PA6 phase was attributed to the glass transition of PS phase and the melt of PA6 phase. However, for blends with PS as disperse phase and PS/PA6 as bicontinuous phases, the emerge of PTC effect was due to the melt of PA6 phase.

Key wordscomposites    conductive polymer composites    carbon nanotubes    morphology    percolation threshold    positive temperature coefficient
收稿日期: 2013-09-16     
基金资助:* 国家自然科学基金51003024和河南省高等学校青年骨干教师资助计划资助项目。
图1  5% CNTs填充PS/PA6 (40/60)共混体系OM像
图2  采用不同溶剂刻蚀5% CNTs填充PS/PA6 (40/60) 共混体系后的溶液
图3  CNTs及SMA改性CNTs的HRTEM像
图4  6% SMA-CNTs填充PS/PA6 (40/60)共混体系TEM像
图5  CNTs含量的变化对复合体系室温电阻率的影响
图6  不同PA6含量下6% SMA/CNTs填充PS/PA6体系SEM像
图7  不同PA6含量下PS/PA6/SMA-CNTs体系形态结构示意图
图8  PS/PA6/CNTs及PS/PA6/SMA-CNTs体系温阻曲线
图9  PS及PA6的DSC曲线
1 R. Strumpler, J. Glatz-Reichenbach,Conducting polymer composites, J. Electroceram, 3(4), 329(1999)
2 J. C. Huang,Carbon black filled conducting polymers and polymer blends, Adv. Polym. Technol., 21(4), 299(2002)
3 M. Sumita, K. Sakata, Y. Hayakawa, S. Asai, K. Miyasaka, M. Tanemura,Double percolation effect on the electrical conductivity of conductive particles filled polymer blends, Colloid. Polym. Sci., 270(2), 134(1992)
4 M. Q. Zhang, Y. H. Gang, M. Zeng, H. B. Zhang, Y. H Hou,Two-step percolation in polymer blends filled with carbon black, Macromolecules, 31(19), 6724(1998)
5 J. Y. Feng, C. M. Chan,Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene-ethylene containing carbon black-filled HDPE particles, Polymer, 41(12), 7279(2000)
6 Y. Bin, C. Xu, D. Zhu, M. Matsuo,Electrical properties of polyethylene and carbon black particleblends prepared by gelation / crystallization from solution, Carbon, 40(2), 195(2002)
7 H. Yui, G. Z Wu., H. Sano, M. Sumita, K. Kino,Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene, Polymer, 47(10), 3599(2006)
8 Z. B. Xu, C. Zhao, A. J. Gu, Z. P. Fang,Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black, J. Appl. Polym. Sci., 106(3), 2008(2007)
9 YANG Bo,CHEN Xiaolang, CHEN Guangshun, GUO Shaoyun, Morphology and conductivity of conductive carbon black filled PP-EAA composites, Acta Materiae Compositae Sinica, 24(3), 78(2007)
9 (杨 波, 陈晓浪, 陈光顺, 郭少云, 导电炭黑填充PP-EAA 复合材料的形态及电性能, 复合材料学报, 24(3), 78(2007))
10 Z. M. Li, X. B. Xu, A. Lu, K. Z. Shen, R. Huang, M. B. Yang,Carbon black/poly(ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network, Carbon, 42(2), 428(2004)
11 F. Gubbels, R. Jerome, P.H. Teyssie, E. Vanlathem, R. Deltour, A. Calderone,Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites, Macromolecules, 27(7), 1972(1994)
12 S. X. Xu, M. Wen, J. Li, S.Y. Guo, M. Wang, Q. Du,Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler, Polymer, 49(22), 4861(2008)
13 M. Sumita, K. Sakata, S. Asai, K. Miyasaka, H. Nakagawa,Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym. Bull., 25(2), 265(1991)
14 J. Y. Feng, C. M. Chan,Carbon black-filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: Electrical properties and morphology, Polym. Engin. Sci., 38, 1649(1998)
15 J. Y. Feng, C. M. Chan,Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers, Polymer, 41(12), 4559(2000)
16 W. H. Di, G. Zhang, Y. Peng, Z. D. Zhao,Two-step PTC effect in immiscible polymer blends filled with carbon black, J. Mater. Sci., 39, 695(2004)
17 I. Mironi-harpaz, M. Narkis,Thermo-electric behavior (PTC) of carbon black-containing PVDF/UHMWPE and PVDF/XL-UHMWPE blends, Polym. Engin. Sci., 41, 205(2001)
18 M. Moniruzzaman, K. I. Winey,Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39(16), 5194(2006)
19 J. R. Yu, K. B. Lu, E. Sourty, N. Grossiord, C. E. Konine, J. C. Loos,Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology, Carbon, 45, 2897(2007)
20 M. Wu, L. Shaw,Electrical and mechanical behaviors of carbon nanotube-filled polymer blends, J. Appl. Polym. Sci., 99(2), 477(2006)
21 S. Bose, A. R. Bhattacharyya, P. V. Kodgire, A. R. Kulkarni, A. S. Misra,Interactions induced dispersion and confinement of multi-walled carbon nanotubes in co-continuous polymer blends, J. Nanosci. Nanotechno., 8(4), 1867(2008)
22 D. Wu, Y. Zhang, M. Zhang, W. Yu,Selective localization of multi-walled carbon nanotube in PLA/PCL blend, Biomacromolecules, 10(2), 417(2009)
23 A. C. Baudouin, J. Devaux, C. Bailly,Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer, Polymer, 51, 1341(2010)
24 F. F. Tao, B. Nysten, A. C. Baudouin, J. M. Thomassin, D. Vuluga, C. Detrembleur, C. Bailly,Influence of nanoparticleepolymer interactions on the apparent migration behaviour of carbon nanotubes in an immiscible polymer blend, Polymer, 52, 4798(2011)
25 C. Lu, X. N. Hu, Y. X. He, X. H. Huang, J. C. Liu, Y. Q. Zhang,Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology, Polym. Bull., 68, 2071(2012)
26 LU Chang,HU Xiaoning, HE Yuxin, LIU Jichun, ZHANG Yuqing, Electrical properties of conductive polymer composites with special morphology, Chinese Journal of Materials Research, 26(1), 37(2012)
26 (陆 昶, 胡小宁, 赫玉欣, 刘继纯, 张玉清, 特殊形态结构导电高分子复合材料电学性能的研究, 材料研究学报, 26(1), 37(2012))
27 F. Gubbels, R. Jerome, E. Vanlathem, R. Deltour, S. Blacher, F. Brouers,Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends, Chem. Mater, 10(5), 1227(1998)
28 J. Feng, C. M. Chan, J. X. Li,A method to control the dispersion of carbon black in an immiscible polymer blend, Polym. Eng. Sci., 43(5), 1058(2003)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.