Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (12): 901-908    DOI: 10.11901/1005.3093.2013.393
  本期目录 | 过刊浏览 |
原位聚合制备聚氨酯/氧化石墨烯纳米复合材料的力学性能和热稳定性能研究*
李国兴1,赵景珊1,孙科1,王强2,王明1()
1. 西南大学化学化工学院 重庆 400715
2. 西南大学材料与能源学部 重庆 400715
Study on Mechanical Property and Thermal Stability of In-situ Nanocomposites of Polyurethane/ Oxidized Graphene
Guoxing LI1,Jingshan ZHAO1,Ke SUN1,Qiang WANG2,Ming WANG1,**()
1. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715
2. Faculty of Materials and Energy, South west University, Chongqing, 400715
引用本文:

李国兴,赵景珊,孙科,王强,王明. 原位聚合制备聚氨酯/氧化石墨烯纳米复合材料的力学性能和热稳定性能研究*[J]. 材料研究学报, 2014, 28(12): 901-908.
Guoxing LI, Jingshan ZHAO, Ke SUN, Qiang WANG, Ming WANG. Study on Mechanical Property and Thermal Stability of In-situ Nanocomposites of Polyurethane/ Oxidized Graphene[J]. Chinese Journal of Materials Research, 2014, 28(12): 901-908.

全文: PDF(2919 KB)   HTML
摘要: 

采用两步投料法, 将氧化石墨烯(GO)与4, 4′-二苯基甲烷二异氰酸酯(MDI)充分反应后、再加入聚醚多元醇和三羟甲基丙烷原位聚合制备聚氨酯(PU)/GO纳米复合材料。用广角x衍射、拉伸仪、热失重分析仪和扫描电子显微镜等研究了GO含量对PU/GO复合材料弹性模量、拉伸强度、断裂伸长率和热稳定性能的影响。研究发现当GO含量为0.2%时, GO在PU基体内分散均匀未出现团聚现象; 当GO含量增加时, 出现GO团聚体, 且随着GO含量增加而增加。GO团聚现象对PU/GO复合材料的力学性能和热稳定性提高具有不利的影响。未出现GO团聚体的PU/0.2%GO复合材料具有最佳力学性能和热稳定性。用连二亚硫酸钠、氢氧化钠水溶液就地还原制备还原PU/GO纳米复合材料(PU/rGO), 研究GO还原对复合材料力学性能和热稳定性的影响。结果发现, GO在PU基体内可以实现一定程度的就地还原, 还原后复合材料的力学性能有所下降, 但热稳定性能有所提高。

关键词 有机高分子材料氧化石墨烯原位聚合聚氨酯力学性能    
Abstract

The nanocomposites of polyurethane (PU)/oxidized grapheme (GO) were in-situ prepared by a two step process, i.e. firstly the oxidized graphene (GO) and 4, 4’-diphenylmethane diisocyanate (MDI) were fully reacted, and then polyether polyol and trimethylolpropane were further added to synthesize the nanocomposites. The mechanical property and thermal stability of the nanocomposites were investigated by wide-angle x-ray diffractormetry (WAXD), tensile test machine, TGA and SEM. The GOs evenly dispersed and no aggregation was found in PU matrix for the PU/GO nanocomposites with 0.2 % GO. However, the aggregation of GOs appeared and increased with the increasing GO content. The aggregation of GOs was harmful to the mechanical property and thermal stability of the PU/GO nanocomposites. The nanocomposites of PU/0.2% GO show the best mechanical property and thermal stability. The reduced nanocomposites of PU/GO (named as PU/rGO) were prepared by an in-situ reduction process in a solution of sodium hydrosulfite and sodium hydroxide. It follows that the GOs in the PU matrix could be partly reduced; however such partly reduction of GOs would decline the mechanical property, while enhance the thermal stability of the nanocomposites.

Key wordsorganic polymer materials    graphene oxide    in-situ polymerization    polyurethane    mechanical property
收稿日期: 2014-03-06     
基金资助:* 国家自然科学基金51103119和重庆市科委自然科学基金CSTC2014TJYJA50024资助项目。
图1  两步投料法原位聚合PU/GO复合材料的制备过程示意图
图2  GO (a), MDI改性GO (b)和PU/GO原位聚合复合材料(0.2% GO) (c) 的傅立叶红外图谱
图3  氧化石墨烯还原前PU/GO与PU/rGO纳米复合材料颜色的变化情况
图4  氧化石墨烯还原前PU/GO (a)与PU/rGO (b)纳米复合材料的X射线衍射图
图5  PU/rGO纳米复合材料脆断面的SEM图: (a) PU/0.5%rGO, (b) PU/2.0%rGO, (c)和(d) PU/5.0%rGO
图6  还原前后不同GO含量的PU/GO纳米复合材料杨氏模量(a), 拉伸强度(b)和断裂伸长率(c)变化情况
Stages PU/0.2%GO PU/0.2%rGO PU/5.0%GO PU/5.0%rGO
Onset /oC 288 305 218 219
Completion /oC 416 500 422 437
Weight residue /% 7.26 4.0 6.1 8.0
The ratio of weight residue to content of GO 36.3 20 1.22 1.6
表1  还原前后PU/GO纳米复合材料的TGA结果
图7  还原前后PU/GO纳米复合材料热重分析图
1 X. Li, X. Wang, L. Zhang, S. Lee, H. Dai,Chemically derived, ultrasmooth graphene nanoribon semiconductor, Science, 319, 1229(2008)
2 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim,Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706(2009)
3 X. Wang, L. Zhi, K. Mullen,Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Letter, 8, 323(2008)
4 G. Eda, G. Fanchini, M. Chhowalla,Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology, 3, 270(2008)
5 S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner,A Chemical Route to Graphene for Device Applications, Nano Letter, 7(11), 3394(2007)
6 J. R. Potts, D. R. Dreyer, C.r W. Bielawski, R. S. Ruoff,Graphene-based polymer nanocomposites, Polymer, 52, 5(2011)
7 R. J. Young, I. A. Kinloch, L. Gong, K. S. Novoselov,The mechanics of graphene nanocomposites: A review, Composites Science and Technology, 72(12), 1459(2012)
8 H. Kim, A. A. Abdala, C. W. Macosko,Graphene/Polymer Nanocomposites, Macromolecules, 43, 6515(2010)
9 Y. S. Yun, Y. H. Bae, D. H. Kim, J. Y. Lee, I.-J. Chin, H.-J. Jin,Reinforcing effects of adding alkylated graphene oxide to polypropylene, Carbon, 49(11), 3553(2011)
10 J. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. F. Ma, T. Y. Guo, Y. S. Chen,Molecular-Level Dispersion of Graphene into Poly (vinyl alcohol) and Effective Reinforcement of their Nanocomposites, Advanced Functional Materials, 19, 2297(2009)
11 S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil,Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, 49, 198(2011)
12 WANG Ming,ZHANG Panpan, BAI Xiaoyu, Mechanical and Thermal Stabilization Properties of the Poly (vinyl chloride)/Graphene Oxide Film, Chinese Journal of Materials Research, 4, 390(2012)
12 (王 明, 张盼盼, 白晓玉, 聚氯乙烯/氧化石墨烯薄膜的力学性能和热稳定性能, 材料研究学报, 4, 390(2012))
13 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff,Graphene-based composite materials, Nature, 442, 282(2006)
14 F. Barroso-Bujans, S. Cerveny, R. Verdejo, J.J. del Val, J.M. Alberdi, A. Alegr?′a, J. Colmenero,Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation, Carbon, 48, 1079(2010)
15 T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee,Recent advances in graphene based polymer composites, Progress in Polymer Science, 35, 1350(2010)
16 A. Dasari, Z. Z. Yu, Y. W. Mai, G. P. Cai, H. H. Song,Roles of graphite oxide, clay and POSS during the combustion of polyamide 6, Polymer, 50, 1577(2009)
17 H. Kim, C. W. Macosko,Processing-property relationships of polycarbonate/graphene composites, Polymer, 50, 3797(2009)
18 M. S. Rama, S. Swaminathan, Influence of Structure of Organic Modifiers and Polyurethane on the Clay Dispersion in Nanocomposites via In Situ Polymerization. Journal of Applied Polymer Science, 118(3), 1774(2010)
19 S. Parnell, K. Min, Reaction kinetics of thermoplastic polyurethane polymerization in situ with poly(vinyl chloride). Polymer, 46(11), 3649(2005)
20 X. C. Chen, L. M. Wu, S. X. Zhou, B. You,In situ polymerization and characterization of polyester-based polyurethane/nano-silica composites. Polymer International, 52(6), 993(2003)
21 B. K. Kim, Y. J. Shin, S. M. Cho, H. M. Jeong,Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase: The effect of block length and content, Journal of Polymer Science Part B: Polymer Physics, 38(20), 2652(2000)
22 S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff,Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon, 44, 3342(2006)
23 A. V. Raghu, Y. R. Lee, H. M. Jeong, C. M. Shin,Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites, Macromolecular Chemistry and Physics, 209(24), 2487(2008)
24 X. Wang, Y. Hu, L. Song, H. Yang, W. Xing, H. Lu,In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties, Journal of Materials Chemistry, 21, 4222(2011)
25 H. Kim, Y. Miura, C. W. Macosko,Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity, Chemstry of Materials, 22(11), 3441(2010)
26 D. Cai, K. Yusoh, M. Song,The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite, Nanotechnology, 20, 085712(2009)
27 W. C. J. Zuiderduin, C. Westzaan, J. Huétink, R. J. Gaymans,Toughening of polypropylene with calcium carbonate particles, Polymer, 44(1), 261(2003)
28 Y. Lin, H. Chen, C.-M. Chan, J. Wu,The Toughening mechanism of polypropylene/calcium carbonate nanocomposites, Polymer, 51(14), 3277(2010)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[13] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.