Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (4): 405-409    
  研究论文 本期目录 | 过刊浏览 |
Ca掺杂及Ca--Sm和Ca--Gd复合掺杂CeO2基纳米粉体的制备
燕萍1;2;  邵忠宝3;    胡筱敏1
1.东北大学资源与土木工程学院 沈阳 110004
2.沈阳化工学院应用化学学院 沈阳 110142
3.东北大学理学院 沈阳 110004
Preparation of ceria–based nanocrystalline powders doped with calcium, samarium and gadolinium by an improved homogeneous precipitation
YAN Ping ; SHAO Zhongbao;  HU Xiaomin
1.College of Resources and Civil Engineering; Northeastern University; Shenyang 110004
2.Applied Chemistry Department; Shenyang Institute of Chemical Technology; Shenyang 110142
3.College of Science; Northeastern University; Shenyang 110004
引用本文:

燕萍 邵忠宝 胡筱敏. Ca掺杂及Ca--Sm和Ca--Gd复合掺杂CeO2基纳米粉体的制备[J]. 材料研究学报, 2009, 23(4): 405-409.
. Preparation of ceria–based nanocrystalline powders doped with calcium, samarium and gadolinium by an improved homogeneous precipitation[J]. Chin J Mater Res, 2009, 23(4): 405-409.

全文: PDF(875 KB)  
摘要: 

以草酸铵为沉淀剂, 以尿素为pH调节剂, 以Ce(NO3)3 ?6H2O、Ca(NO3)2? 4H2O、Sm2O3和Gd2O3为起始原料, 采用改进的均相沉淀法合成前驱物, 将其在700℃焙烧4.5 h, 分别制备出Ca掺杂及Ca--Sm和Ca--Gd复合掺杂的CeO2 基纳米粉体. 用X射线衍射(XRD)、扫描电子显微镜(SEM)和BET法等技术对焙烧粉体的物相、形貌、晶粒尺寸及比表面积进行了分析表征. 结果表明, 当混合金属离子的总浓度为0.5 mol/L、沉淀剂浓度为0.05 mol/L、起始水解pH值为1时, 可制备出具有立方萤石型晶体结构及良好结晶性、粒度分布在34--39 nm之间的球形纳米粉体. 采用乙醇分散和洗涤掺杂前驱体沉淀, 能有效地减轻焙烧粉体的团聚程度.

关键词 无机非金属材料均相沉淀掺杂氧化铈 纳米级固溶体    
Abstract

Ceria–based precursors doped with calcium, calcium–samarium and calcium–gadolinium were prepared by an improved homogeneous precipitation method using ammonium oxalate as precipitant, high purity reagents Ce(NO3)3·6H2O, Ca(NO3)2·4H2O, Sm2O3 and Gd2O3 were used as raw materials, urea was used as pH adjuster of the mixed solution. The as–synthesized precursor were calcined at 700 ℃ for 4.5 h. The calcined powders were characterized by X–ray diffraction (XRD), scanning electron microscopy(SEM), and Brunauer–Emmett–Teller(BET) specific surface area measurements. The results show that the calcined powders have satisfactory characterizations when the initial hydrolysis pH is approximately 1, the total concentration of mixed cation ions is 0.5 mol/L, and the initial concentration of precipitant is 0.05 mol/L. The powders after calcined have a single cubic fluorite crystalline structure and higher phase purity, with spherical nano–sized particles about 34–39nm in diameter and narrow size distribution. In this study, doped ceria precursors were redispersed and washed in ethanol can alleviate the degree of agglomeration of the calcined powders.

Key wordsinorganicnon-metallicmaterials    homogeneousprecipitation    dopedceria    nano-scalesolid solution
收稿日期: 2009-03-31     
ZTFLH: 

TB321

 
基金资助:

国家自然科学基金30270761资助项目.

1 S.H.Chan, X.J.Chen, K.A.Kohr, A simple bilayer electrolyte model for solid oxide fuel cells, Solid State Ionics, 29, 158(2003) 2 M.Toshiaki, K.Takuya, I.Minoru, M.Atsushi, O.Zempachi, Effects of mixed conduction on the open–circuit voltage of intermediate–temperature SOFCs based on Sm–doped ceria electrolytes, Solid State Ionics, 176, 663(2005) 3 M.Mogensen, N.M.Sammes, G.A.Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 129(1–4), 63(2000) 4 K.Eguchi, T.Setoguchi, T.Inoue, H.Arai, Electrical properties of ceria–based oxides and their application to solid oxide fuel cells, Solid State Ionics, 52(1–3), 165(1992) 5 X.F.Guan, H.P.Zhou, Z.H.Liu, Y.A.Wang, J.Zhang, High performance Gd3+ and Y3+ co–doped ceria–based electrolytes for intermediate temperature solid oxide fuel cells, Materials Research Bulletin, 43, 1046(2008) 6 F.Y.Wang, S.Y.Chen, S.F.Cheng, Gd3+ and Sm3+ co–doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Electrochemistry Communications, 6, 743(2004) 7 M D Hurley, D K Hohnke, Mixed electrical conduction in Ce1−xCaxO2−x, Journal of Physics and Chemistry of Solids, 41(12), 1349(1980) 8 Yin Yanhong, Li Shaoyu, Zhu Wei, Xia Changrong, Meng Guangyao, Research on calcium–doped ceria used in intermediate–temperature SOFCs anodes, Journal of the Chinese Rare Earth Society, 23(3), 317(2005) (尹艳红, 李少玉, 朱威, 夏长荣, 孟广耀, 钙掺杂的氧化铈用于中温SOFCs阳极材料研究, 中国稀土学报, 23(3), 317(2005) 9 GAO Jianfeng, LANG Ying, XIA Changrong, MENG Guangyao, Preparation and electrochemical properties of La0.7Sr0.3FeO3–Sm0.2Ce0.8O2 composite cathodes, Chinese Journal of Materials Research, 19(1), 72(2005) (高建峰, 郎莹, 夏长荣, 孟广耀, La0.7Sr0.3FeO3--Sm0.2Ce0.8O2复合阴极制备及性能研究, 材料研究学报, 19(1), 72(2005)) 10 S.W.Zha, C.R.Xia, G.Y.Meng, Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, Journal of Power Sources, 115, 44(2003) 11 H.B.Li, C.R.Xia, M.H.Zhu, Z.X.Zhou, X.L.Wei, G.Y.Meng, Increasing the sinterability of tape cast oxalate–derived doped ceria powder by ball milling, Ceramics International, 33, 201(2007) 12 H.B.Li, C.R.Xia, M.H.Zhu, et al. Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics, Acta Materialia, 54, 721(2006) 13 Li Guodong, Study on agglomerate mechanism of ultrafine oxide powders, Journal of the Chinese Ceramic Society, 30(5), 645(2002) (李国栋, 氧化物超细粉团聚机理研究, 硅酸盐学报,  30(5), 645(2002)) 14 Q.S.Zhu, B.A.Fan, Low temperature sintering of 8YSZ electrolyte film for intermediate temperature solid oxide fuel cells, Solid State Ionics, 176, 889(2005) 15 Li Jiguang, Sun Xudong, Ru Hongqiang, Hao Shiming, Wet chemical principles of monodisperse ultrafine ceramic powders, Journal of functional materials, 28(4), 333(1997) (李继光, 孙旭东, 茹红强, 郝士明, 湿化学法合成单分散陶瓷超微粉体的基本原理, 功能材料,  28(4), 333(1997)) 16 H.J.Van, T.Horita, T.Kawada, Low temperature fabrication of (Y, Gd, Sm)–doped ceria electrolyte, Solid State Ionics, 86–88, 1255(1996)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.