Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (6): 473-480    DOI: 10.11901/1005.3093.2015.730
  研究论文 本期目录 | 过刊浏览 |
304不锈钢空化水射流表面空蚀损伤研究
吴从前, 任瑞铭, 刘鹏涛, 陈春焕, 赵秀娟()
大连交通大学材料科学与工程学院 大连 116028
Cavitation Erosion of 304 Stainless Steel induced by Caviting Water Jet
WU Congqian, REN Ruiming, LIU Pengtao, CHEN Chunhuan, ZHAO Xiujuan*()
College of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
引用本文:

吴从前, 任瑞铭, 刘鹏涛, 陈春焕, 赵秀娟. 304不锈钢空化水射流表面空蚀损伤研究[J]. 材料研究学报, 2016, 30(6): 473-480.
Congqian WU, Ruiming REN, Pengtao LIU, Chunhuan CHEN, Xiujuan ZHAO. Cavitation Erosion of 304 Stainless Steel induced by Caviting Water Jet[J]. Chinese Journal of Materials Research, 2016, 30(6): 473-480.

全文: PDF(1549 KB)   HTML
摘要: 

采用淹没式空化水射流方法对304不锈钢表面进行不同压力和时间的空化水射流处理, 用扫描电子显微镜原位跟踪观察处理后的试样表面形貌, 研究其空蚀损伤过程及空蚀机理, 并对表层组织和304不锈钢变形机理进行了探讨。结果得出, 根据损伤程度和作用机理的不同, 空蚀损伤区从中心到外围可以分为射流冲击区、过渡区和紊流区三个区, 其中射流冲击区损伤最严重, 紊流区次之, 过渡区最弱。当射流压力为35 MPa、处理40 min时, 射流冲击区损伤速度加快, 并且呈现明显的疲劳损伤特征, 滑移带和晶界处疲劳裂纹萌生和扩展是导致该区损伤剥落的重要原因; 在横截面金相组织中, 过渡区和紊流区出现比射流冲击区更深的形变孪晶层, 且紊流区形变孪晶层厚度达140 μm; 在本实验条件下304不锈钢变形方式为滑移为主, 孪生为辅。试样在空化水射流的作用下有两种空蚀破坏机理, 即交变载荷下疲劳破坏, 以及塑性变形、颈缩和剥落导致的弧坑。

关键词 金属材料空化水射流空蚀损伤滑移带形变孪晶304不锈钢    
Abstract

Cavitation erosion of 304 stainless steel was studied by means of caviting water jet (CWJ) with varying stress and time. By tracking the surface morphology change with scanning electron microscope after the CWJ treatment, the process and mechanism of cavitation erosion were analyzed and the microstructure evolution of the surface and the relevant deformation mechanism were investigated as well. The results are as follows: according to the difference in damage rate and mechanism, the cavitation damage zone can be divided into jet impact zone, transition zone and turbulent zone from the center to the periphery, among them, the damage degree of jet impact zone was the worst, transition zone was the weakest. The damage of jet impact zone was accelerated by the jet pressure 35 MPa for 40 min, and it presented clear characteristics of fatigue damage, the initiation and propagation of fatigue crack in the area of slip band and grain boundary is one of the important reasons leading to the spalling damage; The twin layer of the transition zone and turbulent zone were thicker than that of the jet impact zone in the cross-sectional microstructure, and the thickness of the twin layer in turbulent zone was 140 μm; Under the conditions of this experiment, the main deformation mode of 304 stainless steel is slip deformation, the second is twin deformation. There are two kinds of mechanism of cavitation erosion induced by the cavitating water jet, one is fatigue failure under cyclic loading, the other is arc-shaped pit caused by plastic deformation, necking and spalling.

Key wordsmetallic materials    cavitating water jet    cavitation erosion    slip band    twin    304 stainless steel
收稿日期: 2015-12-15     
ZTFLH:  TG141  
作者简介: 本文联系人: 赵秀娟, 教授
图1  35 MPa压力射流处理60 min试样宏观损伤形貌
图2  淹没式空化水射流示意图
图3  35 MPa射流冲击区表面不同时间形貌观察
图4  35 MPa水射流处理10 min射流冲击区滑移带的形貌
图5  35 MPa水射流处理不同时间紊流区形貌
图6  不同压力下处理60 min射流冲击区形貌
图7  35 MPa压力下试样射流冲击区表面显微硬度和面粗糙度
图8  35 MPa水射流处理50 min横截面组织形貌
图9  空蚀过程中不同的损伤形式
1 HUANG Jitang, Principle and Application of Cavitation and Cavitation Erosion, (Beijing, Tsinghua Uinversity Press, 1991) p.50
1 (黄继汤, 空化与空蚀的原理及应用, (北京, 清华大学出版社, 1991)p.50)
2 LIU Wei, ZHENG Yugui, YAO Zhiming, KE Wei, Research progress on cavitation erosion of metallic materials, Journal of Chinese Society for Corrosion and Protection, 21(4), 250(2001)
2 (柳伟, 郑玉贵, 姚治铭, 柯伟, 金属材料的空蚀研究进展, 中国腐蚀与防护学报, 21(4), 250(2001))
doi:
3 CHEN Darong, Cavitation and cavitation erosion, China Basic Science, 12(6), 3(2010)
3 (陈大融, 空化与空蚀研究, 中国基础科学, 12(6), 3(2010))
4 J. A. Venables, J. P. Hirth, H. C. Rogers, In deformation twinning, Gordon and Breach Science Publishers, London, 25, 77(1963)
5 M. A. Meyers, Y. B. Xu, Q. Xue.Micro-structural evolution in adiabatic localization in stainless steel, Acta Materialia, 51, 1307(2003)
6 Singh R, Tiwari S K, Mishra S K, Cavitation erosion in hydraulic turbine components and mitigation by coatings, current status and future needs, Journal of Materials Engineering Performance, 21(7), 1539(2012)
doi: 10.1007/s11665-011-0051-9
7 SHI Yeting, The research on the resistance of the cavitation performance of pure titanium and TC4 titanium alloy, Master thesis, Tianjin University, 2012
7 (史烨婷, 纯钛及TC4钛合金抗空蚀性能的研究, 硕士学位论文, 天津大学(2012))
8 B.S. Mann, Vivek Arya, B. K.Pant, Cavitation erosion behavior of HPDL-treated TWAS-coated Ti6Al4V alloy and its similarity with water droplet erosion, Journal of Materials Engineering and Performance, 21(6), 849(2012)
doi: 10.1007/s11665-011-9949-5
9 S. R. Daniewicz, S. D. Cummings, Characterization of a water peening process , Transaction of the ASME, 121(3), 336(1999)
doi: 10.1115/1.2812383
10 CAI Shigang, LIU Pengtao, ZHAO Xiujuan, Water cavitation peening-induced surface hardening and cavitation damage of pure titanium, China Surface Engineering, 27(1), 100(2014)
10 (蔡世刚, 刘鹏涛, 赵秀娟, 纯钛空化水喷丸处理表面强化及空蚀损伤, 中国表面工程, 27(1), 100(2014))
11 S. N. Buravova, Yu. A. Gordopolov, Cavitation erosion as a kind of dynamic damage, International Journal of Fracture, 170(2), 83(2011)
12 KAN Xiaoyang, LIU Pengtao, ZHOU Maoyang, ZHAO Xiujuan, CHEN Chunhuan, REN Ruiming, Cavitation erosion on surface of pure titanium in water cavitation jet, Journal of Aeronautical Materials, 35(4), 22(2015)
12 (阚晓阳, 刘鹏涛, 周卯旸, 赵秀娟, 陈春焕, 任瑞铭, 纯钛空化水射流处理表面空蚀损伤研究, 航空材料学报, 35(4), 22(2015))
doi: 10.11868/j.issn.1005-5053.2015.4.004
13 A. Azhari, C. Schindler, K. Hilbert, Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304, Surface & Coatings Technology, 258, 1176(2014)
doi: 10.1016/j.surfcoat.2014.07.013
14 WANG Junwen, Experimental study on water cavitation peening technology to 50Mn, Master thesis, Dalian Jiaotong University, 2006
14 (王俊文, 50Mn空化水喷丸强化技术的研究, 硕士学位论文, 大连交通大学(2006))
15 XU Yiji, Basic research on the theory and application of ultra-high pressure water jet, PhD thesis, Southwest Petroleum University, 2004
15 (徐依吉, 超高压水射流理论与应用基础研究, 博士学位论文, 西南石油大学(2004))
16 X. Q. Zhu, M. Zhou, Q. Dai, Deformation modes in stainless steel during laser shock peening, Journal of Manu Facturing Science & Engineering, 131(5), 611(2009)
doi: 10.1115/1.4000099
17 J. P. Chu, J. M. Rigsbee, G. Banaset, Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel, Materials Science and Engineering, 260(1), 260(1999)
doi: 10.1016/S0921-5093(98)00889-2
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.