Please wait a minute...
材料研究学报  2007, Vol. 21 Issue (6): 589-592    
  论文 本期目录 | 过刊浏览 |
Fe_3O_4纳米粒子的磷酸胆碱仿细胞膜修饰
吴楠;金桥;计剑
浙江大学高分子科学与工程系教育部高分子合成与功能构造重点实验室 杭州310027
引用本文:

吴楠;金桥;计剑. Fe_3O_4纳米粒子的磷酸胆碱仿细胞膜修饰[J]. 材料研究学报, 2007, 21(6): 589-592.

全文: PDF(594 KB)  
摘要: 用水相共沉淀法制备了超顺磁的Fe_3O_4纳米粒子,并通过Michael加成将2-(甲基丙烯酰氧基)乙基-2-(三甲基氨基)乙基磷酸酯(MPC)共价键合到氨基化的Fe_3O_4纳米粒子表面.与未修饰MPC的Fe_3O_4纳米粒子相比,修饰了MPC的纳米粒子能大大减少蛋白质的非特异性吸附,延长了复钙化凝血时间,并具有良好的生物相容性.
关键词 无机非金属材料Fe3O4纳米粒子磷酸胆碱    
Key words
收稿日期: 1900-01-01     
1 F.Richard,HVC punches PM to new mass production lim- its,Metal Powder Report,57(9),26(2002)
2 R.L.Orban,New research directions in powder metallurgy, Remanian Reports in Physics,56(3),505(2004)
3 CHI Yue,GUO Shiju,MENG Fei,YANG Xia,ZHANG Heng,LIAN Yudong,High velocity compaction in powder metallurgy,Powder Metallurgy Industry,15(6),41(2005) (迟悦,果世驹,孟飞,杨霞,张恒,连玉栋,粉末冶金高速压制成形技术,粉末冶金工业,15(6),41(2005))
4 SHEN Yuanxun,XIAO Zhiyu,WEN Liping,PAN Guoru, LI Yuanyuan,Principle,characteristics and status of high velocity compaction in powder metallurgy,Powder Metal- lurgy Industry,16(3),19(2006) (沈元勋,肖志瑜,温利平,藩国如,李元元,粉末冶金高速压制技术的原理、特点及其研究进展,粉末冶金工业,16(3),19(2006))
5 ZHOU Shengyu,YIN Haiqing,QU Xuanhui,Research sta- tus of high velocity compaction technology in powder met- allurgy,Materials Review,21(7),79(2007) (周晟宇,尹海清,曲选辉,粉末冶金高速压制技术的研究进展,材料导报,21(7),79(2007))
6 P.Skoglund,in 2001 International conference on Power Transmission Components,High density PM components by high velocity compaction,edited by A.Volker,Chu Chi- ulung,F.William,J.Jandeska,(Ypsilanti,Metal Powder Industries Federation,2001) p.16
7 P.Skoghind,High density PM parts by high velocity com- paction,Powder Metallurgy,44(3),199(2001)
8 P.Skoglund,in Advance in Powder Metallurgy & Partic- ulate Materials-2002,High-Density PM Components by High Velocity Compaction,edited by A.Volker,Chu Chi- ulung,F.William,J.Jandeska,(New Jersey,Metal Powder Industries Federation,2002) p.1
9 E.Caroline,H(?)gan(?)s promotes potential of high velocity compaction,Metal Powder Report,56(9),6(2001)
10 F.Dore,L.Lazzarotto,S.Bourdin,High velocity com- paction:overview of materials,applications and potential, Materials Science Forum,534-536,293(2007)
11 E.Torsten,L.Ppetri,Residual stresses in green bodies of steel powder after conventional and high speed com- paction,Materials Science Forum,407(404),77(2002)
12 B.Barendvanden,F.Christer,L.Tomus,Industrial imple- mentation of high velocity compaction for improved prop- erties,Powder Metallurgy,49(2),107(2006)
13 P.Jonsén,H-A.H(?)ggblad,L.Troive,J.Furuberg,S.Allroth, P.Skoglund,Green body behavior of high velocity pressed metal powder,Materials Science Forum,534-536, 289(2007)
14 C.Aslund,in Euro PM 2004 Conference Proceedings,High velocity compaction(HVC) of stainless steel gas atomized powder,edited by D.Herbert,R.Raimund,(Shrewsbury UK,EPMA,2004) p.533
15 A.Bruska,S.Bengt,K.Leif,Development of a high-velocity compaction process for polymer powders,Polymer Test- ing,24(4),909(2005)
16 D.Jauffrès,O.Lame,G.Vigier,F.Doré,Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction,Polymer,48(21),6374(2007)
17 HUANG Peiyun,Principles of Powder Metallurgy(Bei- jing,The press of Metallurgical Industry,1997) p.170 (黄培云,粉末冶金原理,(北京,冶金工业出版社,1997)p.170)
18 WU Chengyi,ZHANG Liying,Mechanical principles of Powder Forming(Beijing,The press of Metallurgical In- dustry,2003) p.6 (吴成义,张丽英,粉末成形力学原理,(北京,冶金工业出版社,2003)p.6)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.