Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 355-361    
  研究论文 本期目录 | 过刊浏览 |
一种镍基单晶高温合金压缩变形的各向异性
孟杰1, 金涛1,2, 孙晓峰1, 胡壮麒1
1.中国科学院金属研究所 沈阳 110016
2.北京科技大学 北京 100083
Compression Deformation of a Nickel-Base Single Crystal Superalloy of Different Orientations
MENG Jie1,  JIN Tao1,2, SUN Xiaofeng1, HU Zhuangqi1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2.University of Science and Technology, Beijing 100083
引用本文:

孟杰 金涛 孙晓峰 胡壮麒. 一种镍基单晶高温合金压缩变形的各向异性[J]. 材料研究学报, 2011, 25(4): 355-361.
, , , . Compression Deformation of a Nickel-Base Single Crystal Superalloy of Different Orientations[J]. Chin J Mater Res, 2011, 25(4): 355-361.

全文: PDF(1085 KB)  
摘要: 将一种镍基单晶高温合金在室温沿不同晶体取向压缩变形, 研究了在试样表面形成的滑移线和微观组织的变化。结果表明: 这种合金<111>取向试样的屈服强度最高, <001>取向的强度最低, <110>取向的强度居中。<001>和<110>取向的试样在压缩变形过程中主要启动八面体滑移系, 其中<110>取向明显观察到双滑移系的开动; 而<111>取向的试样则启动了六面体滑移系。基体通道、枝晶、共晶等组织的各向异性, 在一定程度上影响不同晶体取向合金的变形特征。<110>取向试样的变形组织中形成了大量的层错, 而在其它两个取向的试样中则未观察到。<111>取向变形后基体通道中的位错密度明显高于其它两个取向, 这种高加工硬化率使<111>取向具有高的屈服强度。
关键词 金属材料镍基单晶高温合金压缩变形滑移线各向异性    
Abstract:A nickel base single crystal superalloy was compressed at room temperature along the <001>,  <110>  and <111>  orientations, respectively. The evolution of the slip traces and the microstructure in the deformation was investigated by metallographic microscope and transmission electron microscope. It was found that compress deformation depends on the crystal orientation and the precedence of the compress yield stress is:  <111>, <110>, <001>. For the <001>  or <110> oriented specimen compressed 4.5% the slip traces match the octahedral slip, and the slip traces in the <111> oriented alloy prove to slip along the {001} planes. It is noted that deformation of the <110> oriented alloy takes place by activation of two slip systems. The anisotropy of the matrix channel, dendritic segregation and eutectic leads to the change of deformation behavior for various orientations. For the <110> oriented alloy γ’ particles cut by stacking fault. The high dense dislocation of the <111> oriented alloy contributes to its high yield strength.
Key wordsmetallic materials    nickel-base single crystal superalloy    compress    slip trace    anisotropy
收稿日期: 2010-08-13     
ZTFLH: 

TG146

 
基金资助:

国家基础研究计划973计划2010CB631206, 自然科学基金50931004和北京科技大学重点实验室开放课题2008ZD--07资助项目。

1 D.M.Shah, D.N.Duhl, in Superalloys 1984, The Effect of Orientation, Temperature, and Gamma Prime Size on the Yield Strength of a Single Crystal Nickel Base Superalloy, edit by M. Gell, C.S. Kortovich, R.H. Bricknell, W.B.Kent, J.F.Radavich (Warrendale, PA, TMS, 1984) p.105–114

2 K.Kakehi, Influence of precipitate size and crystallographic orientation on strength of a single crystal Ni–base superalloy, Materials Transaction, 40(2), 159(1999)

3 SHA Yuhui, ZHANG Jinghua, JIN Tao, XU Yongbo, HU Zhuangqi, Dependence of compression yield behavior on temperature, orientation and strain rate in a Ni–base superalloy single crystal, Acta Metallurgica Sinica, 35(5), 495(1999)

(沙玉辉, 张静华, 金  涛, 徐永波, 胡壮麒, 镍基高温合金单晶压屈服行为的温度、取向及应变速率依赖性, 金属学报,  35(5), 495(1999))

4 R.V.Miner, R.C.Voigt, J.Gayda, T.P.Gabb. Orientation and temperature dependence of some mechanical properties of the single-crystal Ni-base superalloy Rene N4: part w tensile behavior, Metallurgical and Materials Transactions A, 17(3), 491(1986)

5 R.V.Miner, R.C.Voigt, J.Gayda, T.P.Gabb, Orientation and temperature dependence of some mechanical properties of the single-crystal Ni–base superalloy Rene N4: part x Tension-compression anisotropy, Metallurgical and Materials Transactions A, 17(3), 507(1986)

6 LI Ying, SU Bin, Abnormal yield behavior and deformation mechanism of nickel base single crystal superalloy, material engineering, (3), 45(2004)

(李  影, 苏  彬, 镍基单晶高温合金的反常屈服行为与变形机制, 材料工程, (3), 45(2004))

7 A.Nits, U.Lagerpusch, E.Nembach, CRSS anisotropy and tension/compression asymmetry of a commercial superalloy, Acta Materialia, 46(13), 4769(1998)

8 LIN Yijian, Robert W.Cahn, One-way value effect of coherent γ/γ' interface on dislocation movement, Journal of Iron and Steel Research, 6(3), 47(1994)

(林一坚, R.W.Cahn, 共格γ/γ'界面对位错运动的单向阀门作用, 钢铁研究学报,  {\bf 6}(3), 47(1994))

9 D.M.Knowles, Q.Z.Chen, Superlattice stacking fault formation and twinning during creep in γ/γ single crystal superalloy CMSX–4, Materials Science and Engineering A, 340(1–2), 88(2003)

10 W.W.Milligan, S.D.Antolovich, Yielding and deformation behavior of the single crystal superalloy PWA 1480, Metallurgical Transactions A, 18(1), 85(1987)

11 E.F.Westbrooke, L.E.Forero, F.Ebrahimi, Slip analysis in a Ni–base superalloy, Acta Materialia, 53(7), 2137(2005)

12 YANG Deqing, Dislocation and metallic strengthening mechanisms, (Harbin, The Press of Harbin Institute of Technology, 1991) p.185

(杨德庆, 位错与金属强化机制, 第一版 (哈尔滨, 哈尔滨工业大学出版社, 1991) p.185)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.