Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (4): 362-368    
  研究论文 本期目录 | 过刊浏览 |
纳米SiO2对低碳钢表面磷化膜的结构和耐蚀性的影响
王毅, 盛敏奇, 钟庆东, 周琼宇, 吴红艳, 李振华
上海大学材料科学与工程学院 上海 200072
Influence of Nano SiO2 on Structure and Corrosion Resistance of Phosphate Coating on Surface of Mild Steel
WANG Yi, SHENG Minqi, ZHONG Qingdong, ZHOU Qiongyu, WU Hongyan, LI Zhenhua
School of Material Science and Engineering, Shanghai University, Shanghai 200072
引用本文:

王毅 盛敏奇 钟庆东 周琼宇 吴红艳 李振华. 纳米SiO2对低碳钢表面磷化膜的结构和耐蚀性的影响[J]. 材料研究学报, 2011, 25(4): 362-368.
, , , , , . Influence of Nano SiO2 on Structure and Corrosion Resistance of Phosphate Coating on Surface of Mild Steel[J]. Chin J Mater Res, 2011, 25(4): 362-368.

全文: PDF(1155 KB)  
摘要: 使用加入纳米SiO2的低温磷化液在低碳钢表面制备了磷化膜, 并对其形貌、成分、厚度、粗糙度以及耐蚀性进行表征, 研究了纳米SiO2对磷化膜结构和性能的影响。结果表明, 纳米SiO2不是磷化膜的主要成分, 但是在磷化液中添加纳米SiO2使磷化膜增厚、细化磷化膜晶粒、提高磷化膜致密度, 并提高了磷化膜的耐腐蚀性能。当纳米SiO2的加入量为2 g/L时, 磷化膜在5%NaCl溶液中的耐腐蚀性最好, 腐蚀电流密度为0.231 μA/cm2
关键词 材料失效与保护磷化低碳钢纳米SiO2耐腐蚀性    
Abstract:Under the low temperature conditions, phosphate coating on the surface of mild steel by the addition of nano-SiO2 in phosphating solution was prepared in this paper. The influence of nano-SiO2 on structure and performance of phosphate coating was investigated by SEM, XRD, EDS, thickness, surface roughness and corrosion electrochemical testing. The results show that although nano-SiO2 is not main component of phosphate coating, but the coating thickness decreases with increasing the concentration of nano-SiO2, nano-SiO2 can reduce the crystal size of coating and increase the density and corrosion resistance of coating. When the nano-SiO2 concentration is 2 g/L, the best corrosion resistance of phosphate coating is obtained in 3.5% NaCl solution. The corrosion current of phosphating sample was 0.231 μA/cm2 in 5% NaCl solution.
Key wordsmaterials failure and protection    phosphorization    mild steel    nano-SiO2    corrosion resistance
收稿日期: 2010-12-22     
ZTFLH: 

TG174

 
基金资助:

国家自然科学基金50571059和50615024, 教育部新世纪优秀人才支持计划NCET--07--0536, 教育部创新团队计划RT0739资助项目。

1 D.Weng, P.Jokiel, A.Uebleis, H.Boehni, Corrosion and protection characteristics of zinc and manganese phosphate coatings, Surface and Coatings Technology, 88, 147-156(1996)

2 E.P.Banczek, P.R.P.Rodrigues, I.Costa, Investigation on the effect of benzotriazole on the phosphating of carbon steel, Surface and Coatings Technology, 201, 3701-3708(2006)

3 V.Burokas, A.Martuˇsiene, O.Gircene, Influence of fluoride ions on the amorphous phosphating of aluminium alloys, Surface and Coatings Technology., 202, 239-245(2007)

4 S.M.Tamborim Takeuchi, D.S.Azambuja, A.M.Saliba-Silva, I.Costa, of NdFeB magnets by phosphating with tungstate incorporation, Surface and Coatings Technology, 200, 6826-6831(2006)

5 A.S.Akhtar, K.C.Wong, K.A.R.Mitchell, The effect of pH and role of Ni2+ in zinc phosphating of 2024-Al alloy Part I: Macroscopic studies with XPS and SEM, Applied Surface Science., 253, 493–501(2006)

6 YU Baoxing, DONG Shoushan, Study on the long-life phosphating solutions form ultipurpose use, Corrsion Science and Technology Protection., 10(6), 342-346(1998)

(于宝兴, 董首山, FDT磷化液的研制, 腐蚀科学与防护技术,  10(6), 342--346(1998))

7 G.Bikulcus, V.Burokas, A.Martuˇsiene, E.Matulionis, Effects of magnetic fields on the phosphating process, Surface and Coatings Technology, 172, 139–143(2003)

8 P. Bala Srinivasan, S. Sathiyanarayanan, C. Marikkannu, K. Balakrishnan, Acceleration of ambient temperature phosphating by an electrochemical pulse technique, Surface and Coatings Technol., 64, 161–165(1994)

9 P.K.Sinha, R.Feser, Phosphate coating on steel surfaces by an electrochemical method, Surface and Coatings Technology, 161, 158–168(2002)

10 S.Jegannathan, T.S.N.Sankara Narayanan, K.Ravichandran, S.Rajeswari, Formation of zinc–zinc phosphate composite coatings by cathodic electrochemical treatment, Surface and Coatings Technology, 200, 4117–4126(2006)

11 Minqi Sheng, Yinyin Wei, Qindong Zhong, The influence of dissolved ozone in a phosphate bath on phosphate coatings on carbon steel, Journal of Coatings Technology and Research, 6, 543–547(2009)

12 ZHAO Lulu, JIN Hong, JIN Yan, LI Mengke, Study on electrolytic Ni–P–nano SiO2 composite coating and its corrosion resistance properties, Journal of Liaoning Normal University (Natural Science Edition), 9(27), 288–291(2004)

(赵璐璐, 金  红, 金  彦, 镍磷纳米SiO$_{2}$化学复合镀层耐腐蚀特性研究, 辽宁师范大学学报,  9(27), 288--291(2004))

13 LEI Ting, LI Shuying, Study of wear resistance of phosphating film reinforced with nano alumina, Materials Protection, 39(4), 16–20(2006)

(雷  霆, 李淑英, 纳米Al2O3增强磷化膜耐磨性的研究, 材料保护,  39(4), 16--20(2006))

14 ZHANG Ying, LI Shuying, Effect of content of Al2O3 on structure and wear resistance of Nano-composite coating, Surface Technology, 37(3), 38-40,74(2008)

(张  影, 李淑英, Al2O3含量对纳米复合磷化膜组织结构及耐磨性的影响, 表面技术,  37(3), 38-40,74(2008))

15 Takahiro Namazu, Yoshitada Isono, Quasi-static bending test of nano-scale SiO2 wire at intermediate temperatures using AFM-based technique, Sensors and Actuators A., 104, 78–85(2003)

16 Kyoung Nam Lee, Kyoung Seob Kim, Nam Hoon Kim, Yonghan Roh, Fabrication of SiO2 nano-dots by block copolymer lithography and liquid phase deposition, Materials Science and Engineering B., 147, 209–212(2008)

17 Benjaram M. Reddy, Pandian Lakshmanan, Pankaj Bharali, Pranjal Saikia, Dehydration of 4-methylpentan-2-ol over CexZr1-xO2/SiO2nano-composite catalyst, Journal of Molecular Catalysis A: Chemical., 258, 355–360(2006)

18 S.P.Ramnani, S.Sabharwal, J.Vinod Kumar, K.Hari Prasad Reddy, K.S.Rama Rao, P.S.Sai Prasad, Advantage of radiolysis over impregnation method for the synthesis of SiO2 supported nano-Ag catalyst for direct decomposition of N2O, Catalysis Communications, 9, 756–761(2008)

19 Vanessa de Freitas Cunha Lins, Geraldo Francisco de Andrade Reis, Carlos Roberto de Araujo, Tulio Matencio, Electrochemical impedance spectroscopy and linear polarization applied to evaluation of porosity of phosphate conversion coatings on electrogalvanized steels, Applied Surface Science., 253, 2875–2884(2006)
[1] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
[2] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[6] 袁强强, 汪志刚, 江永芳, 张迎晖, 黄安康, 叶洁云. 温轧温度对Cr-Ti-B系低碳钢组织与织构的影响[J]. 材料研究学报, 2022, 36(2): 81-89.
[7] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 李玲妹, 黄惠珍, 张青环, 帅歌旺. PSn-9Zn-0.1S无铅钎料性能的影响[J]. 材料研究学报, 2021, 35(8): 615-622.
[10] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[11] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[14] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[15] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.