Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (1): 32-38    
  研究论文 本期目录 | 过刊浏览 |
La2O3 -Y2O3-ZrO2纳米陶瓷粉末制备及高温相稳定性
何轶伦, 周伍喜, 李松林, 刘怀菲, 赖天苗, 汤盛龙
中南大学粉末冶金国家重点实验室 长沙 410083
Preparation and High Temperature Phase Stability of La2O3–Y2O3–ZrO2 Composite Ceramic Nanopowder
HE Yilun ZHOU, Wuxi LI Songlin, LIU Huaifei, LAI Tianmiao, TANG Shenglong
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
引用本文:

何轶伦 周伍喜 李松林 刘怀菲 赖天苗 汤盛龙. La2O3 -Y2O3-ZrO2纳米陶瓷粉末制备及高温相稳定性[J]. 材料研究学报, 2011, 25(1): 32-38.
, . Preparation and High Temperature Phase Stability of La2O3–Y2O3–ZrO2 Composite Ceramic Nanopowder[J]. Chin J Mater Res, 2011, 25(1): 32-38.

全文: PDF(956 KB)  
摘要: 用化学共沉淀法制备4.5%Y2O3--ZrO2(YSZ)和0.6% La2O3--YSZ、0.8% La2O3--YSZ、1.2% La2O3--YSZ(0.6La、0.8La、1.2La)(摩尔分数)纳米复合陶瓷粉末, 研究了四组粉末的高温相稳定性。结果表明: 采用正向滴淀方法制备的0.6La粉末(粒径~50 nm)团聚严重, 而用反向滴淀方法制备的0.6La粉末(粒径~20 nm), 粉末团聚少; 各组前躯体粉末在600℃煅烧2 h后都呈单一四方相结构; 在1200℃烧结100 h后0.6La、0.8La坯体呈单一四方相结构, 无相变, YSZ和1.2La坯体都有立方相且1.2La坯体有锆酸镧相生成; 在1300℃烧结100 h后0.6La, 0.8La, 1.2La坯体呈四方相和立方相结构, 其中1.2La坯体有锆酸镧相生成, 在相同条件下烧结的YSZ坯体有少量(~1.5\%)单斜相产生; 在1400℃烧结100 h后各组份中四方相已不能保持稳定, 转化为单斜相和立方相, 0.6La、0.8La、1.2La、YSZ坯体单斜相含量分别为30.5%, 32%, 35%, 46.0%。在YSZ中添加少量La2O3在1300℃烧结能有效改善其高温相的稳定性。
关键词 无机非金属材料  稀土共掺杂二氧化锆  纳米粉末  共沉淀 相稳定性    
Abstract:4.5%Y2O3–ZrO2, 0.6%La2O3–YSZ, 0.8%La2O3–YSZ, 1.2%La2O3–YSZ (YSZ, 0.6La, 0.8La, 1.2La) (molar fraction) composite ceramic nanopowders were prepared by co–precipitation method using ZrOCl2·8H2O, Y(NO3)3·6H2O, La2O3 as raw materials. The synthesized powders were characterized and the phase stability was investigated. The results show that the size of 0.6La particles prepared by reverse titration method is ∼20 nm, and the size of particles prepared by the straight titration method is ∼50 nm. The agglomeration of the powder prepared by reverse titration method is also smaller than that of the powder prepared by straight titration method. After calcined at 600oC for 2 h, all of the synthesized powders showed the pure tetragonal structure; after sintered at 1200oC  for 100  h, 0.6La, 0.8La showed the pure tetragonal structure, the cubic phase composed of both of YSZ and 1.2La and pyrochlore structure compose of 1.2La; after sintered at 1300  for 100 h, 0.6La, 0.8La, 1.2La showed the tetragonal structure, the cubic phase compose of all synthesized powders and pyrochlore structure compose of 1.2La and small fraction of monoclinic phase (∼1.5%) was formed of YSZ; after sintered at 1400oC  for 100h, the tetragonal phase cannot keep stable, monoclinic phase compose of all the synthesized powders, the monoclinic phase content of 0.6La, 0.8La, 1.2La, YSZ is 30.5%, 32%, 35%, 46.0% respectively. The phase stability of YSZ can be modified by addition small fraction of La2O3 at 1300oC.
Key wordsinorganic non–metallic materials     rare–earth co–doped zirconia     nanopowder     co–precipitation     phase stability
收稿日期: 2010-05-20     
ZTFLH: 

TB321

 
基金资助:

教育部新世纪优秀人才支持计划CET--06--0683和湖南省121优秀人才支持计划08--030329资助项目。

1 M.Matsumoto, K.Aoyama, H.Matsubara, K.Takayama, T.Banno, Y.Kagiya, Y.Sugita, Thermal conductivity and phase stability of plasma sprayed ZrO2–Y2O3–La2O3 coatings, Surface and Coating Technology, 194, 31(2005)

2 M.Matsumoto, N.Yamaguchi, H.Matsubara, Low thermal conductivity and high temperature stability of ZrO2–Y2O3–La2O3 coatings produced by electron beam PVD, Scripta Materialia, 50, 867(2004)

3 X.Huang, D.Wang, M.Lamontagne, C.Moreau, Experimental study of the thermal conductivity of metal oxides co–doped yttria stabilized zirconia, Materials Science and Engineering B, 149, 63(2008)

4 F.M.Pitek, C.G.Levi, Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system, Surface & Coatings Technology, 201, 6044(2007)

5 R.L.Jones, R.F.Reidy, D.Mess, Scandia, yttria–stabilized zirconia for thermal barrier coatings, Surface and Coatings Technology, 82, 70(1996)

6 M.N.Rahaman, J.R.Gross, R.E.Dutton, H.Wang, Phase stability, sintering, and thermal conductivity of plasma– sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications, Acta Materialia, 54, 1615(2006)

7 M.Matsumoto, H.Takayama, D.Yokoe, K.Mukai, H.Matsubara, Y.Kagiya, Y.Sugita, Thermal cycle behavior of plasma sprayed La2O3,Y2O3 stabilized ZrO2 coatings, Scripta Materialia, 50, 2035(2006)

8 H.Dai, X.Zhong, J.Li, Y.Zhang, J.Meng, X.Cao, Thermal stability of double–ceramic–layer thermal barrier coatings with various coating thicknes, Materials Science and Engineering

A, 433, 1(2006)

9 C.Viazzi, J.P.Bonino, F.Ansart, A.Barnab´e, Structural study of metastable tetragonal YSZ powders produced via sol–gel route, Journal of Alloys and Compounds, 452, 377(2008)

10 H.Chen, C.X.Ding, Nanostruetured zirconia coating prepared by atmospheric plasma spraying, Surface and Coatings Technology, 150, 31(2002)

11 ZHOU Hong, LI Fei, HE Bo, WANG Jun, SUN Baode, Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying, Transactions of Nonferrous Metals Society of China, 17, 389(2007)

12 ZHOU Hongming, YI Danqing, Research on preparation and thermophysical properties of Dy2Zr2O7 ceramic powder, Journal of Aeronautical Materials, 28(1), 65(2008)

(周宏明, 易丹青, 热障涂层用Dy2Zr2O7陶瓷粉末制备及其热物理性能研究, 航空材料学报, 28(1), 65(2008))

13 Y.T.Moon, H.K.Park, D.K.Kim, C.H.Kim, I.S.Seog, Preparation of monodisperse and spherical zirconia powders by heating of alcohol–aqueous salt solution, Journal American Ceramic Society, 78(10), 2690(1995)

14 Z.C.Michael, E.P.Andrew, H.B.Charls, Sol–gel and ultra–fine particle formation via dielectric tuning of inorganic salt–alcohol–water solutions, Journal of Colloid and Interface

Science, 222(1), 20(2000)

15 J.Y.Choi, D.K.Kim, Preparation of monodisperse and spherical powders by heating of alcohol–aqueous salt solutions, Journal of Sol–Gel Science and Technology, 15(3),

231(1999)

16 H.Chen, Y.Gao, Y.Liu, H.Luo, Coprecipitation synthesis and thermal conductivity of La2Zr2O7, Journal of Alloys and Compounds, 480, 843(2009)

17 H.Yang, J.Ouyang, X.Zhang, N.Wang, C.Du, Synthesis and optical properties of yttria–doped ZrO2 nanopowders, Journal of Alloys and Compounds, 458, 474(2008)

18 J.Sun, L.Gao, pH effect on titania–Phase transformation of precipitates from titanium tetrachloride solutions, Journal of American Ceramic Society, 85(9), 2382(2002)

19 S.G.Chen, Y.S.Yin, D.P.Wang, J.Li, Reduced activation energy and crystalline size for yttria–stabilized zirconia nano–crystals: An experimental and theoretical study, Journal of Crystal Growth, 267, 100(2004)

20 S.G.Chen, Y.S.Yin, D.P.Wang, Experimental and theoretical investigation on the correlation between aqueous precursors structure and crystalline phases of zirconia, Journal

of Molecular Structure, 690, 181(2004)

21 GE Rongde, ZHAO Tiancong, Computer simulation on the structure of colloidal aggregates formed during chemical precipitation, Journal of Central South Institute of Mining and Metallurgy, 24(5), 607(1993)

(葛荣德, 赵天从, 化学沉淀过程中形成的胶粒团聚体结构的计算机模拟, 中南矿冶学院学报,  24(5), 607(1993))

22 M.Leoni, R.L.Jones, P.Scardi, Phase stability of scandia–yttria–stabilized zirconia TBCs, Surface and Coatings Technology, 108–109, 107(1998)

23 C.Viazzi, J.P.Bonino, F.Ansrat, A Barnab´e, Structural study of metastable tetragonal YSZ powders produced via sol–gel route, Journal of Alloys and Compounds, 452, 377(2008)

24 LIU Huaifei, LI Songlin, LI Qilian, LI Yongming, ZHOU Wuxi, Preparation and phase stability at high temperatures of La2O3, Y2O3 codoped ZrO2 ceramic poeder., Jounal of Inorganic Materials, 24(6), 1(2009)

(刘怀菲, 李松林, 李其连, 李勇明, 周伍喜, 热障涂层用La2O3, Y2O3共掺杂ZrO2陶瓷粉末的制备及其相稳定性研究, 无机材料学报,  24(6), 1(2009))

25 X.Q.Cao, Application of rare earths in thermal barrier coating materials, Journal of Materials Science and Technology, 23(1), 15(2007)

26 E.R.Andrievskaya, L.M.Lopato, Influence of composition on the T→M transformation in the systems ZrO2–Ln2O3 (Ln=La, Nd, Sm, Eu), Journal of Materials Science, 30, 2591(1995)

27 J.W.Jang, D.J.Kim, D.Y.Lee, Size effect of trivalent oxides on low temperature phase stability of 2Y–TZP, Journal of Materials Science, 36, 5391(2001)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.