Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (5): 550-554    
  研究论文 本期目录 | 过刊浏览 |
压电材料对含铂活性炭氢气吸附性能的影响
李轩1,2, 倪文1, 黄建阳2, 张筝2
1.北京科技大学土木与环境工程学院~金属矿山高效开采教育部重点实验室 北京 100083
2.密西根工业大学材料科学与工程系  密西根 49931
Influence of Piezoelectric Element on Hydrogen Adsorption of Pt--supported Activated Carbon
LI Xuan1,2,  NI Wen1,  HUANG Jianyang2,  ZHANG Zheng2
1.State Key Laboratory for High--Efficient Mining and Safety of Metal Mines of Ministry of Education, School of Civil and Environment Engineering, University of Science and Technology Beijing, Beijng 100083, China
2.Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, USA
引用本文:

李轩 倪文 黄建阳 张筝. 压电材料对含铂活性炭氢气吸附性能的影响[J]. 材料研究学报, 2010, 24(5): 550-554.
, , , . Influence of Piezoelectric Element on Hydrogen Adsorption of Pt--supported Activated Carbon[J]. Chin J Mater Res, 2010, 24(5): 550-554.

全文: PDF(708 KB)  
摘要: 用机械混合法制备含有不同质量分数铂的活性炭, 研究了压电材料PMN--PT产生的电荷对含铂活性炭氢气吸附性能的影响。结果表明, 在高压氢气条件下PMN--PT产生的电荷能增强铂和活性炭颗粒对氢气分子的吸附, 并加速氢气分子的解离和氢原子的扩散, 使含铂活性炭的储氢量明显提高。铂产生的氢溢流作用有效地提高了活性炭的氢气吸附量。在室温和8 MPa氢气压力条件下PMN--PT使活性炭(NAC)氢气吸附量产生的增长幅度为15%, 使含有质量分数0.83%、1%和1.25%铂的活性炭氢气吸附量增长的幅度分别为36.5%、39.3%和43.9%。
关键词 无机非金属材料  活性炭  氢气吸附  氢溢流作用 压电材料    
Abstract:Mixing Pt--coated activated carbon with secondary activated carbon as adsorbent was used for hydrogen storage. Behaviors of hydrogen adsorption on Pt--supported activated carbon in the presence of a piezoelectric element were investigated. Hydrogen storage in activated carbons can be increased by secondary hydrogen spillover from a supported Pt catalyst. The piezoelectric element is able to autogenously generate charges in hydrogen pressure. The observed adsorption enhancements of NAC, Pt/NAC--1, Pt/NAC--2 and Pt/NAC--3 are 15\%, 36.5\%, 39.3\% and 43.9\%, respectively. The greater enhancement observed from hydrogen adsorption on Pt/NAC samples can be attributed to charges generated by PMN--PT facilitate dissociation of hydrogen molecules into hydrogen atoms. The easier accessibility of the atomic orbital might favor the electron transfer from the atomic hydrogen to charged carbon.
收稿日期: 2010-02-24     
ZTFLH: 

TQ424

 
1K.Mark Thomas, Hydrogen adsorption and storage on porous materials, Catal. Today, 120, 389(2007) 2H.Jin, Y.S.Lee, I.Hong, Hydrogen adsorption characteristics of activated carbon, Catal. Today, 120, 399(2007) 3M.G.Nijkamp, JEMJ.Raaymakers, A.J.Van Dillen, K.P.De Jong, Hydrogen storage using physisorption--materials demands, Appl. Phys. A, 72, 619(2001) 4X.B.Zhao, B.Xiao, A.J.Fletcher, K.M.Thomas, Hydrogen adsorption on functionalized nanoporous activated carbons, J. Phys. Chem. B,  109, 8880(2005) 5Z.Yang, Y.Xia, R.Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite--like carbon materials, J. Am. Chem. Soc.,  129, 1673(2007) 6B.Panella, M.Hirscher, S.Roth, Hydrogen adsorption in different carbon nanostructures, Carbon, 43, 2209(2005) 7R.Dash, J.Chmiola, G.Yushin, Y.Gogotsi, G.Landisio, J.Singer, J.Fischer, S.Kucheyev, Titanium carbide derived nanoporous carbon for energy--related applications, Carbon,  44, 2489(2006) 8M.Shiraishi, T.Takenobu, H.Kataura, M.Ata, Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms, Appl. Phys. A, 78, 947(2004) 9E.Poirier, R.Chahine, P.Be'nard, D.Cossement, L.Lafi, E.Me'lancon, T.K.Bose, S.De'silets, Storage of hydrogen on single--walled carbon nanotubes and other carbon structures,Appl. Phys. A, 78, 961(2004) 10B.Panella, M.Hirscher, B.Ludescher, Low--temperature thermal--desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials, Microporous Mesoporous Mater., 103, 230(2007) 11A.D.Lueking, R.T.Yang, Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes--implications for hydrogen storage, J. Catal., 206, 165(2002) 12F.H.Yang, R.T.Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes, Carbon, 40, 437(2002) 13R.T.Yang, Y.Wang, Catalyzed hydrogen spillover for hydrogen storage, J. Am. Chem. Soc., 131, 4224(2009) 14A.J.Robell, E.V.Ballou, M.Boudart, Surface diffusion of hydrogen on carbon, J. Phys. Chem.,  68, 2748(1964) 15S.T.Srinivas, P.K.Rao, Direct observation of hydrogen spillover on carbon--supported platinum and its influence on the hydrogenation of benzene, J. Catal., 148, 470(1994) 16A.D.Rud, A.M.Lakhnik, V.G.Ivanchenko, V.N.Uvarov, A.A.Shkola, V.A.Dekhtyarenko, L.I. Ivaschuk, N.I. Kuskova, Hydrogen storage of the Mg--C composites, Int. J. Hydrogen Energy,  33, 1310(2008) 17M.Boudart, M.A.Vannice, J.E.Benson, Adlineation, portholes and spillover, Z. Phys. Chem. Neue Folge, 64, 171(1969) 18R.B.Levy, M.Boudart, The kinetics and mechanism of spillover, J. Catal., 32, 304(1974) 19W.C.Neikam, M.A.Vannice, Hydrogen spillover in the Pt black/Ce--Y zeolite/perylene system, J. Catal., 27, 207(1972) 20J.Y.Hwang, S.Z.Shi, B.W.Li, X.Sun, Storing hydrogen with perhydrides, Advanced Materials for Energy Conversion III. TMS (The Minerals, Metals \& Materials Society, 2006) p.101 21W.Liu, Y.H.Zhao, J.Nguyen, Y.Li, Q.Jiang, E.J.Lavernia, Electric field induced reversible switch in hydrogen storage based on single--layer and bilayer graphenes, Carbon,  47, 3452(2009) 22S.Z.Shi, J.Y.Hwang, X.Li, X.Sun, Enhanced hydrogen sorption on carbon and nio in the presence of a piezoelectric element, Energy Fuels,  23, 6085(2009) 23T.P.Blacha, E.M.A.Gray, Sieverts apparatus and methodology for accurate determination of hydrogen uptake by light--atom hosts, J. Alloys Compd.,  446--447, 692(2007) 24L.F.Wang, F.H.Yang, R.T.Yang, Effect of surface oxygen groups in carbons on hydrogen storage by spillover, Ind. Eng. Chem. Res., 48, 2920(2009) 25X.W.Sha, M.T.Knippenberg, A.C.Cooper, G.P.Pez, H.S.Cheng, Dynamics of hydrogen spillover on carbon--based materials, J. Phys. Chem. C, 112, 17465(2008) 26N.Park, S.Hong, G.Kim, S.H.Jhi, Computational study of hydrogen storage characteristics of covalent--bonded graphenes, J. Am. Chem. Soc.,  129, 8999(2007) 27P.R.Kemper, P.Weis, M.T.Bowers, P.Maitre, Origin of bonding interactions in Cu+(H2)n clusters: an experimental and theoretical investigation, J. Am. Chem. Soc., 120, 13494(1998) 28J.E.Bushnell, P.Maitre, P.R.Kemper, M.T.Bowers, Binding energies of Ti+ (H2)1-6 clusters: theory and experiment, J. Chem. Phys., 106, 10153(1997) 29P.R.Kemper, J.Bushnell, G.von Helden, M.T.Bowers, Cobalt--hydrogen (Co+.cntdot.(H2)n) clusters: binding energies and molecular parameters, J. Phys. Chem.,  97, 52(1993) 30L.Andrews, X. Wang, Infrared spectra and structures of the stable CuH-2, AgH-2, AuH-2, and AuH-4 anions and the AuH-2 molecule, J. Am. Chem. Soc.,  125, 11751(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.