Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 387-393    DOI: 10.11901/1005.3093.2018.569
  研究论文 本期目录 | 过刊浏览 |
碳纳米管对水泥基材料热膨胀性能的影响
张淑文,张杰(),王贵春,高丹盈
郑州大学土木工程学院 郑州 450001
Effect of Carbon Nanotubes on Thermal Expansion Properties of Cement-based Materials
Shuwen ZHANG,Jie ZHANG(),Guichun WANG,Danying GAO
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
引用本文:

张淑文,张杰,王贵春,高丹盈. 碳纳米管对水泥基材料热膨胀性能的影响[J]. 材料研究学报, 2019, 33(5): 387-393.
Shuwen ZHANG, Jie ZHANG, Guichun WANG, Danying GAO. Effect of Carbon Nanotubes on Thermal Expansion Properties of Cement-based Materials[J]. Chinese Journal of Materials Research, 2019, 33(5): 387-393.

全文: PDF(3566 KB)   HTML
摘要: 

在水泥基中掺入不同比例的碳纳米管,制备出碳纳米管水泥基复合材料。测量其在室温~600℃的热膨胀性能,并根据DSC/TG、XRD图谱,孔径分布图和扫描电镜图从微观尺度分析其变化规律的机理。结果表明,从室温到150℃掺入各比例碳纳米管的水泥基复合材料热膨胀率变化趋势相似,热膨胀率为正值而出现微膨胀;150℃~590℃热膨胀率为负值且逐渐减小,试件持续收缩。当碳纳米管的掺量为水泥的0.3%时热膨胀曲线始终在其他掺量之下,热膨胀率达到最小值。这表明,碳纳米管掺量为0.3%的材料水化反应充分,产生大量的水化硅酸钙凝胶,收缩明显、密实度显著提高。掺入0.3%的碳纳米管可有效阻止供暖管道局部混凝土的膨胀,提高结构的耐久性。

关键词 复合材料碳纳米管碳纳米管水泥基复合材料微观结构高温作用热膨胀率    
Abstract

Carbon nanotubes of different proportions were added to the cement matrix to prepare cement-based materials, and the thermal expansion property of those materials was measured from room temperature to 600°C. While the materials were characterized by means of DSC/TG, XRD, pore size distribution diagrams, SEM images. The results show that the thermal expansion rate is positive from room temperature to 150°C, there is a slight expansion; the thermal expansion rate is negative and gradually decreases from about 150°C to 590°C, the specimen shrinks continuously. When the blending amount of carbon nanotubes is 0.3%, the thermal expansion curve is always below those with the amounts other than 0.3%, and the thermal expansion rate reaches a minimum value. This shows that when the amount of carbon nanotubes is 0.3%, the hydration reaction is sufficient and a large amount of hydrous calcium silicate gel is produced, and the shrinkage is obvious and the density is significantly improved. Therefore, the content of 0.3% carbon nanotubes can effectively prevent the emerge of abnormal expansion of local area for a heating pipe and therefore, improve the durability of the structure.

Key wordscomposites    carbon nanotubes    carbon nanotubes cement-based composites    microstructure    high temperature effect    thermal expansion rate
收稿日期: 2018-09-20     
ZTFLH:  TB33  
基金资助:中国博士后科学基金(2017M612419);河南省重点科研项目(17A580004)
作者简介: 张淑文,女,1988年生,讲师
PropertyParameter
Non-carbon content/%, mass fraction<5
Median wall number/Walls7
Median outer diameter(OD)/nm8~15 nm
Median inner diameter(ID)/nm3~5 nm
Median tube length/μm3~12 μm
Median aspect ratio300
Moisture content/%, mass fraction1
Bulk density(tapped)/g·cm-30.15
Specific surface area/m2·g-1>233
表1  碳纳米管的基本性能参数
Chemical compositionCaOSiO2Al2O3Fe2O3MgOSO3Cl-
Content63.5521.487.362.922.462.110.018
表2  水泥化学组成
SpecimenMix proportionWater-cement ratioBlending amount/%
Cement/gMWCNTs /gDispersantWater/mLDefoamer /g
A0100005000.40
A11000.10.6500.210.40.1
A21000.20.6500.210.40.2
A31000.30.6500.210.40.3
A41000.40.6500.210.40.4
A51000.50.6500.210.40.5
A61000.60.6500.210.40.6
Total7002.13.63501.26
表3  试验材料配合比
图1  掺加碳纳米管水泥基试件的DSC/TG图谱
图2  掺加碳纳米管水泥基试件的XRD图谱
图3  用压汞法测试的孔径分布
图4  碳纳米管水泥基材料的扫描电镜照片
图5  水泥净浆热膨胀率变化曲线
图6  掺量为0.3%的的热膨胀率变化曲线
图7  掺量为0.6%的热膨胀率变化曲线
图8  各比例量热膨胀率变化曲线对比图
[1] JinW L, ZhongX P. Relationship of structural durability with structural safety and serviceability in whole life-cycle [J]. J. Build. Struct., 2009, 30(6): 1
[1] 金伟良, 钟小平. 结构全寿命的耐久性与安全性、适用性的关系 [J]. 建筑结构学报, 2009, 30(6): 1)
[2] FuY F, WongY L, TangC A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part I: Thermal cracking around single inclusion [J]. Cem. Concr. Compos., 2004, 26: 99
[3] FanJ, XiongG J, LiG Y. Progress in research and development of carbon nanotubes-reinforced cement-based composite materials [J]. Mater. Rev., 2014, 28(11): 142
[3] 范 杰, 熊光晶, 李庚英. 碳纳米管水泥基复合材料的研究进展及其发展趋势 [J]. 材料导报, 2014, 28(11): 142)
[4] JabeenS, KausarA, MuhammadB, et al. A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: Structure, preparation and properties [J]. Polym.-Plast. Technol. Eng., 2015, 54: 1379
[5] YanH, RanQ P, ShuX, et al. Research advances on performance optimization of cementitious materials using nanomaterials [J]. Mater. China, 2017, 36: 645
[5] 严 涵, 冉千平, 舒 鑫等. 纳米材料优化水泥基材料性能的研究进展 [J]. 中国材料进展, 2017, 36: 645
[6] XuS L, LiuJ T, LiQ H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste [J]. Constr. Build. Mater., 2015, 76: 16
[7] KashaniA, NgoT D, WalkleyB, et al. Thermal performance of calcium-rich alkali-activated materials: A microstructural and mechanical study [J]. Constr. Build. Mater., 2017, 153: 225
[8] LiQ H, YaoY, SunB. Investigation on behavior of slag to thermal expansion of cement [J]. Concrete, 2009, (1): 84
[8] 李清海, 姚 燕, 孙 蓓. 磨细矿渣对水泥基材料热膨胀性能影响的研究 [J]. 混凝土, 2009, (1): 84)
[9] TangQ L, HuangJ, TianG X. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites [J]. J. Funct. Mater., 2017, 48: 6042
[9] 唐倩兰, 黄 俊, 田国鑫. 碳纳米管分散性及其水泥基复合材料力学性能的研究进展 [J]. 功能材料, 2017, 48: 6042
[10] PangZ P, SunX G, ChengX Y, et al. Effect of carbon nanotube content on electromagnetic interference shielding performance of carbon nanotube-cellulose composites materials [J]. Chin. J. Mater. Res., 2015, 29(8): 583
[10] 庞志鹏, 孙晓刚, 程晓圆等. 碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响 [J]. 材料研究学报, 2015, 29(8): 583)
[11] GaoX, WeiY, HuangW. Phase identification in cement paste by modulus mapping [J]. Chin. J. Mater. Res., 2016, 30(5): 321
[11] 高 翔, 魏 亚, 黄 卫. 基于动态模量成像的硬化水泥浆体微观物相的识别 [J]. 材料研究学报, 2016, 30(5): 321)
[12] Petru?evskiG, AcevskaJ, StefkovG, et al. Characterization and origin differentiation of morphine derivatives by DSC/TG and FTIR analysis using pattern recognition techniques [J]. J. Therm. Anal. Calorim., 2016, 123: 2561
[13] ZhangN, ZhangT, LiaoJ, et al. Effect of pore solution freezing on thermal strain of water-saturated cement based material at low temperature by differential scanning calorimetry [J]. J. Chin. Ceram. Soc., 2015, 43: 599
[13] 张 楠, 张 涛, 廖 娟等. 利用差示扫描量热法研究孔溶液结冰对水饱和水泥基材料低温热形变的影响 [J]. 硅酸盐学报, 2015, 43: 599
[14] ReddyG K, YarakkulaK. Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 263: 032003
[15] GaoY, De SchutterG, YeG, et al. A microscopic study on ternary blended cement based composites [J]. Constr. Build. Mater., 2013, 46: 28
[16] GatelyR D, Marc in het Panhuis. Filling of carbon nanotubes and nanofibres [J]. Beilstein J. Nanotechnol., 2015, 6: 508
[17] XiaoH J, SunW, JiangJ Y, et al. Characterization of microstructure of cement-based materials by multi-cycle-MIP method [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2013, 43: 371
[17] 肖海军, 孙 伟, 蒋金洋等. 水泥基材料微结构的反复压汞法表征 [J]. 东南大学学报(自然科学版), 2013, 43: 371
[18] DingQ J, HeZ. Advances in research on the formation mechanism of cementitious paste microstructure in current concrete [J]. Mater. China, 2009, 28(11): 8
[18] 丁庆军, 何 真. 现代混凝土胶凝浆体微结构形成机理研究进展 [J]. 中国材料进展, 2009, 28(11): 8)
[19] LvS H, ZhangJ, LuoX Q, et al. Microstructure and properties for composites of graphene oxide/cement [J]. Chin. J. Mater. Res., 2018, 32(3): 233
[19] 吕生华, 张 佳, 罗潇倩等. 氧化石墨烯/水泥基复合材料的微观结构和性能 [J]. 材料研究学报, 2018, 32(3): 233)
[20] HonorioT, BaryB, BenboudjemaF. Thermal properties of cement-based materials: Multiscale estimations at early-age [J]. Cem. Concr. Compos., 2018, 87: 205
[21] WangH T, WebbT, BitlerJ W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite [J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 170
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.