Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (10): 791-800    DOI: 10.11901/1005.3093.2017.746
  研究论文 本期目录 | 过刊浏览 |
树枝状介孔氧化硅核/壳复合微球的合成和表征
左长智1, 陈杨1(), 陈爱莲2
1 常州大学材料科学与工程学院 常州 213164
2 常州大学机械工程学院 常州 213164
Synthesis and Characterization of Core/Shell Structured Silica Composite Microspheres with Dendritic Mesoporous Silica Shells
Changzhi ZUO1, Yang CHEN1(), Ailian CHEN2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
引用本文:

左长智, 陈杨, 陈爱莲. 树枝状介孔氧化硅核/壳复合微球的合成和表征[J]. 材料研究学报, 2018, 32(10): 791-800.
Changzhi ZUO, Yang CHEN, Ailian CHEN. Synthesis and Characterization of Core/Shell Structured Silica Composite Microspheres with Dendritic Mesoporous Silica Shells[J]. Chinese Journal of Materials Research, 2018, 32(10): 791-800.

全文: PDF(6522 KB)   HTML
摘要: 

以阳离子表面活性剂十六烷基三甲基溴化铵为模板、以正硅酸乙酯(TEOS)为前驱体、三乙醇胺为催化剂、正己烷为有机油相,使用油水两相体系实现树枝状介孔氧化硅(Dendritic mesoporous silica, D-mSiO2)在实心氧化硅(Solid silica, sSiO2)微球表面的连续均匀包覆,制备出具有核/壳结构的sSiO2/D-mSiO2复合微球。使用场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和氮气吸附/脱附等手段表征了样品的结构。FESEM和TEM结果表明,在复合微球的氧化硅壳层中有大量的放射树枝状开放介孔,其孔道垂直于内核表面呈辐射状,改变TEOS用量可调控包覆层的厚度。小角衍射的结果显示,这种类型的树枝状介孔孔道的有序性比较差,孔道的平均孔径分布在7~9 nm。随着搅拌速率(50~500 r/min)的提高,D-mSiO2壳层厚度(5~60 nm) 呈先增大后减小趋势。还讨论了树枝状介孔氧化硅核壳复合微球的形成机制及其影响因素。

关键词 无机非金属材料介孔氧化硅树枝状孔道核壳结构复合微球    
Abstract

Core/shell structured composite microspheres of sSiO2/D-mSiO2 composed of solid silica (sSiO2) as core and dendritic mesoporous silica (D-mSiO2) as shell were synthesized via an oil-water biphase stratification approach with cetyltrimethylammonium bromide (CTAB) as template, tetraethylorthosilicate (TEOS) as precursor, Triethanolamine (TEA) as catalyst and n-hexane as emulsion agent. The synthesized products were characterized by means of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and nitrogen adsorption/desorption measurements. As revealed by FESEM and TEM that there existed plenty of radiate-dendritic-like open meso-channels, which were perpendicular to the sSiO2 sphere surface.The thicknesses of D-mSiO2 shell could be controlled by adjusting the TEOS amount. Low-angle XRD analyses suggested that the mesochannles in the shells exhibit poor degree of order, and the average pore diameter was 7~9 nm. Moreover, the D-mSiO2 shell thicknesses (5~60 nm) increased firstly and then decreased with the increase of stirring rate (50~500 r/min). Finally, the formation mechanism for the mesoporous shells with radiate-dendritic-like open meso-channels of composite microspheres was also discussed.

Key wordsinorganic non-metallic materials    mesoporous silica    dendritic mesoporous channels    core/shell structure    composite microspheres
收稿日期: 2017-12-18     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51405038, 51575058, 51875052)
作者简介:

作者简介 左长智,男,1991年生,硕士生

图1  sSiO2/D-mSiO2复合微球样品的红外光谱图
图2  sSiO2和sSiO2/D-mSiO2样品的FESEM照片
图3  sSiO2和sSiO2/D-mSiO2样品的TEM照片
图4  在不同搅拌速度下sSiO2/D-mSiO2复合微球的TEM照片
图5  sSiO2/D-mSiO2复合微球的XRD谱
图6  sSiO2/D-mSiO2复合微球的氮气吸附/脱附等温线及孔径分布曲线
Samples Shell thickness
/ (nm)a
Surface area
/ (m2g-1)b
Average pore size / (nm)c Pore Volume
/ (cm3g-1)d
Adsorption Desorption
sSiO2/D-mSiO2-1 37 ± 4 187.4 7.7 5.7 0.34
sSiO2/D-mSiO2-2 78 ± 3 241.4 7.4 5.0 0.42
sSiO2/D-mSiO2-3 114 ± 9 408.3 8.6 6.2 0.90
表1  sSiO2/D-mSiO2复合微球的孔结构参数
图7  sSiO2/D-mSiO2复合微球的形成机理图
[1] Tan L F, Chen D, Liu H Y, et al.A silica nanorattle with a mesoporous shell: an ideal nanoreactor for the preparation of tunable gold cores[J]. Adv. Mater., 2010, 22(43): 4885
[2] Yokoi T, Kubota Y, Tatsumi T, et al.Amino-functionalized mesoporous silica as base catalyst and adsorbent[J]. Appl. Catal. A-Gen., 2012, 421: 14
[3] Yang B, Edier K, Guo C, et al.Assembly of nonionic-anionic co-surfactants to template mesoporous silica vesicles with hierarchical structures[J]. Micropor. Mesopor. Mat., 2010, 131(1-3): 21
[4] Chen Y, Li Z, Qin J, et al.Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance[J]. J. Mater. Sci., 2016, 51(12): 5811
[5] Jung S B, Ha T J, Park H H.Investigate of the properties of organically modified ordered mesoporous films[J]. J. Colloid. Interf. Sci., 2008, 320: 527
[6] Jung K T, Chu Y H, Haam S, et al.Synthesis of mesoporous silica fiber using spinning method[J]. J. Non-Cryst. Solids, 2002, 298(2-3): 193
[7] Jana S, Dutta B, Honda H, et al.Mesoporous silica MCM-41 with rod-shaped morphology: Synthesis and characterization[J]. Appl. Clay Sci., 2011, 54(2): 138
[8] Luo L, Liang Y, Erichsen E S, et al.Monodisperse mesoporous silica nanoparticles of distinct topology[J]. J. Colloid. Interf. Sci., 2017, 495: 84
[9] Zhang X, Zhu W, Cai Q, et al.A size-controllable preparation of monodisperse mesoporous SiO2 microspheres[J]. J. Funct. Mater., 2011, 42: 803(张雪龄, 朱维耀, 蔡强等. 单分散介孔氧化硅微球的粒径可控制备[J]. 功能材料,2011,42: 803)
[10] Wang M, Sun Z, Yue Q, et al.An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres[J]. J. Am. Chem. Soc., 2014, 136: 1884
[11] Park D S, Yun D, Choi Y, et al.Effect of 3D open-pores on the dehydration of n-butanol to di-n-butyl ether (DNBE) over a supported heteropolyacid catalyst[J]. Chem. Eng. J., 2013, 228: 889
[12] Shen D, Yang J, Li X, et al.Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Lett., 2014, 14: 923
[13] Suzuki K, Ikari K, Imai H.Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system[J]. J. Am. Chem. Soc., 2004, 126(2): 462
[14] Fang X, Chen C, Liu Z, et al.A cationic surfactant assisted selective etching strategy to hollow mesoporous silica sphere[J]. Nanoscale, 2011, 3: 1632
[15] Mizutani M, Yamada Y, Nakamura T, et al.Anomalous pore expansion of highly monodispersed mesoporous silica spheres and its application to the synthesis of porous ferromagnetic composite[J]. Chem. Mater., 2008, 20(14): 4777
[16] Du X, He J.Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers[J]. Nanoscale, 2012, 4: 852
[17] Sun Z, Cui G, Li H, et al.Multifunctional dendritic mesoporous silica nanospheres loaded with silver nanoparticles as a highly active and recyclable heterogeneous catalyst[J]. Colloid Sur. A-Physicochem. Eng. Asp., 2016, 489: 142
[18] Xue X, Lang W, Yan X, et al.Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2[J]. ACS Appl. Mater. Interfaces, 2017, 9: 15408
[19] Yang J, Chen W, Shen D, et al.Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal[J]. J. Mater. Chem. A, 2014, 2: 11045
[20] Zhang H, Li Z, Xu P, et al.A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release[J]. Chem. Commun., 2010, 46(36): 6783
[21] Xie Y, Wang J, Wang M, et al.Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution[J]. J. Hazard. Mater., 2015, 297: 66
[22] Du X, Zhao C, Huang H, et al.Synthesis of dendrimer-like porous silica nanoparticle and their applications in advanced carrier[J]. Prog. Chem., 2016, 28(8): 1131(杜鑫, 赵彩霞, 黄洪伟等. 树枝状多孔氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化新进展,2016,28(8): 1131)
[23] Ming W, Wu D, Benthem R, et al.Superhydrophobic films from raspberry-like particles[J]. Nano Lett., 2005, 5(11): 2298
[24] Karandikar P R, Lee Y J, Kwak G, et al.Co3O4@mesoporous silica for fischer-tropsch synthesis: Core-shell catalysts with multiple core assembly and different pore diameters of shell[J]. J. Phys. Chem. C, 2014, 118: 21975
[25] Sekhar A C S, Meera C J, Ziyad K V, et al. Synthesis and catalytic activity of monodisperse gold-mesoporous silica core-shell nanocatalysts[J]. Catal. Sci. Technol., 2013, 3: 1190
[26] Chen Y, Chen A, Qin J.Polystyrene core-silica shell composite particles: effects of mesoporous shell structures on oxide CMP and mechanical stability[J]. RSC. Adv., 2017, 7: 6548
[27] Chen Y, Wang Y, Qin J.Preparation of allotropic composite abrasives SSiO2/MSiO2 with core/shell structure[J]. Chin. J. Mater. Res., 2015, 29(8): 634(陈杨, 汪亚运, 秦佳伟. 同质异构SSiO2/MSiO2核/壳复合磨粒的合成[J]. 材料研究学报,2015,29(8): 634)
[28] Wei H, Han L, Shi L, et al.Synthesis of monodisperse silica microspheres with solid core and mesopore shell[J]. Chem. J. Chinese. U., 2011,32(3): 503(魏昊, 韩路, 石琳等. 单分散核-壳结构介孔氧化硅微球的合成 [J]. 高等学校化学学报,2011,32(3): 503)
[29] Jiang W, Wu C, Zhang R.General assembly of organic molecules in core-shell mesoporous silica nanoparticles[J]. Mater. Lett., 2012, 77: 100
[30] Ran Z, Sun Y, Chang B, et al.Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier[J]. J. Colloid. Interf. Sci., 2013, 410: 94
[31] Qu Q, Min Y, Zhang L, et al.Silica microsphere with fibrous shells: synthesis and application in HPLC[J]. Anal. Chem., 2015, 87: 9631
[32] Qu Q, Si Y, Xuan H, et al.Synthesis of core-shell silica spheres with tunable pore diameters for HPLC[J]. Mater. Lett., 2018, 211: 40
[33] Shen X, Zhai Y, Sun Y, et al.Microwave-assisted preparation and characterization of ultrafine spherical SiO2 powder[J]. J. Northeast. Univ., 2011, 32(7): 985(申晓毅, 翟玉春, 孙毅等. 球形氧化硅微粉的微波辅助制备和表征[J]. 东北大学学报(自然科学版),2011,32(7): 985)
[34] Deshmukh P, Peshwe D, Pathak S.Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash[J]. Trans. India Inst. Metals, 2012, 65(1): 63
[35] Kruk M, Jaroniec M.Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes[J]. J. Phys. Chem. B, 1997, 101(4): 583
[36] Kruk M, Jaroniec M.Characterization of the porous structure of SBA-15[J]. Chem. Mater., 2000, 12: 1961
[37] Kao K, Mou C.Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent[J]. Micropor. Mesopor. Mat., 2013, 169: 7
[38] Santos S N, Reis S R R D, Pires L P P, et al. Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system[J]. Micropor. Mesopor. Mat., 2017, 251: 181
[39] Burgess C G V, Everett D H. The lower closure point in adsorption hysteresis of capillary condensation type[J]. J. Colloid. Interf. Sci., 1970, 33: 611
[40] Seaton N A.Determination of the connectivity of porous solids from nitrogen sorption measurements[J]. Chem. Engng. Sci., 1991, 46: 1895
[41] Groen J C, Peffer L A A, Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Micropor. Mesopor. Mat., 2003, 60: 1
[42] Yoon S B, Kim J, Kim J H, et al.Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface[J]. J. Mater. Chem., 2007, 17: 1758
[43] Monnier A, Schüth F, Huo Q, et al.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261: 1299
[44] Wang W, Wang X, Huang X.Effects of ethanolamines catalysts on synthesis of silica aerogel[J]. Chem. Ind. Eng., 2010, 27(3): 219(王文金, 王雪枫, 黄雪莉. 乙醇胺对硅气凝胶合成的催化作用[J]. 化学工业与工程,2010,27(3): 219)
[45] By K M, Johannes K, Thomas B.Colloidal suspensions of nanometer-sized mesoporous silica[J]. Adv. Funct. Mater., 2007, 17: 605
[46] Yang J, Shen D, Wei Y, et al.Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels[J]. Nano Res., 2015, 8(8): 2503
[47] Deng Y, Qi D, Deng C, et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem. Soc., 2008, 130: 28
[48] Yue Q, Li J, Zhang Y, et al.An interface coassembly in biliquid phase: Toward core-shell magnetic mesoporous silica microspheres with tunable pore size[J]. J. Am. Chem. Soc., 2015, 137: 13282
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.