Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (3): 225-232    DOI: 10.11901/1005.3093.2017.320
  研究论文 本期目录 | 过刊浏览 |
ZnFe2O4-α-Fe2O3/SiC泡沫结构催化剂的制备和丁烯氧化脱氢性能
姜仁政1,2, 矫义来1, 孙博1, 杨晓丹1, 杨振明1, 张劲松1()
1 中国科学院金属研究所 沈阳 110016;
2 中国科学院大学 北京 100049;
Preparation of Foam Structured Catalyst ZnFe2O4-α-Fe2O3/SiC and its Performance in Oxidative Dehydrogenation of Butene
Renzheng JIANG1,2, Yilai JIAO1, Bo SUN1, Xiaodan YANG1, Zhenming YANG1, Jinsong ZHANG1()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
引用本文:

姜仁政, 矫义来, 孙博, 杨晓丹, 杨振明, 张劲松. ZnFe2O4-α-Fe2O3/SiC泡沫结构催化剂的制备和丁烯氧化脱氢性能[J]. 材料研究学报, 2018, 32(3): 225-232.
Renzheng JIANG, Yilai JIAO, Bo SUN, Xiaodan YANG, Zhenming YANG, Jinsong ZHANG. Preparation of Foam Structured Catalyst ZnFe2O4-α-Fe2O3/SiC and its Performance in Oxidative Dehydrogenation of Butene[J]. Chinese Journal of Materials Research, 2018, 32(3): 225-232.

全文: PDF(11081 KB)   HTML
摘要: 

以柠檬酸-硝酸盐作为粘结剂用浆料涂覆法制备出ZnFe2O4-α-Fe2O3/SiC泡沫结构催化剂,使用X射线衍射(XRD)、扫描电镜(SEM)和N2气吸附仪等手段表征其物相组成、形貌和结构,研究了柠檬酸-硝酸盐浓度和涂层负载量对结构催化剂涂层形貌、孔结构以及1-丁烯氧化脱氢性能的影响。结果表明,柠檬酸-硝酸盐对活性组分物相组成和比例没有影响;制得的结构催化剂涂层紧凑、平整,且具有较宽的介孔孔径分布;柠檬酸-硝酸盐的浓度和最可几孔径尺寸对结构催化剂性能的影响不大。随着涂层负载量的增加结构催化剂的比表面积逐渐增大,氧化脱氢性能逐渐提高。当涂层的负载量达到0.2 g/mL、丁烯体积空速为300 h-1时丁烯转化率和丁二烯选择性分别达到86%和91%,明显高于颗粒催化剂,表现出优异的氧化脱氢性能。

关键词 无机非金属材料ZnFe2O4-α-Fe2O3;泡沫SiC结构催化剂1-丁烯氧化脱氢浆料涂覆    
Abstract

A foam structured catalyst of ZnFe2O4-α-Fe2O3/SiC was prepared by a slurry-coating method with citric acid-nitrates as binder. Its phase composition, morphology and pore structure were characterized by XRD, SEM and BET. The influence of the concentration of citric acid-nitrates and the deposited amount of slurry on the morphology, pore structure and catalytic performance in the oxidative dehydrogenation of 1-butene of the prepared catalyst were investigated. The result show that the concentration of citric acid-nitrates hardly changed the phase composition; the as-prepared structured catalyst has a compact and neat coating with a wide range distribution of pore size; the concentration of citric acid-nitrates of the slurry or the most probable pore size of the as-prepared catalyst has a little influence on the peformance of the structured catalyst. The BET surface area and the catalytic performance of the structured catalyst gradually increased with the incresing the deposited amount of slurry. In case of gas firing hourly space velocity of bntene of 300 h-1, the conversion rate of 1-butene and selectivity of butadiene reache ca. 86% and 91%, respectively for the prepared structured catalyst with a deposited amount of 0.2 g/mL slurry, which are much higher than that for particulate catalysts, indicating superior oxidative dehydrogenation performance.

Key wordsinorganic non-metallic materials    ZnFe2O4-α-Fe2O3;    foam SiC    structured catalyst    1-butene oxidative dehydrogenation    slurry-coating
收稿日期: 2017-05-17     
ZTFLH:  TQ031  
作者简介:

作者简介 姜仁政,男,1985年生,博士

图1  共沉淀ZF-0颗粒、ZF-0.11涂层颗粒、ZFS-0.2结构催化剂和泡沫SiC的XRD图谱
图2  泡沫SiC和ZFS-0.2结构催化剂的SEM照片
图3  ZFS-0.2结构催化剂的高倍和)低倍率照片a、b、c和d所对应的CNS浓度分别为0.11、0.44、0.88和1.32 mol/L
Coating powders BET surface
areaa / m2g-1
Pore volumeb
/ cm3g-1
ZF-0 7.69 0.074
ZF-0.11 9.77 0.234
ZF-0.44 8.96 0.144
ZF-0.88 8.40 0.071
ZF-1.32 9.69 0.078
binder c 19.51 0.229
表1  ZF-c涂层颗粒的比表面积和孔容
图4  ZF-c涂层颗粒的孔径分布
图5  涂层载量不同的ZFS-w结构催化剂的筋表面照片
Coating powders BET surface
areaa/m2g-1
Pore volumeb
/cm3g-1
ZFS-0.064 0.96 0.012
ZFS-0.082 1.589 0.015
ZFS-0.128 1.703 0.019
ZFS-0.164 1.839 0.028
ZFS-0.2 2.29 0.03
ZFS-0.223 2.711 0.033
表2  ZFS-w结构催化剂的比表面积和孔容
图6  ZFS-w结构催化剂的孔径分布
图7  在不同反应条件下CNS浓度对ZFS-0.2结构催化剂性能的影响
图8  在不同反应条件下涂层负载量对ZFS结构催化剂性能的影响
图9  在不同反应条件下ZFS-0.2结构催化剂、ZF-0.11颗粒催化剂和ZF-0共沉淀颗粒催化剂的性能
[1] Makshina E V, Dusselier M, Janssens W, et al.Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene[J]. Chem. Soc. Rev., 2014, 43(22): 7917
[2] Kim T W, Kim J W, Kim S Y, et al.Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed[J]. Chem. Eng. J., 2015, 278: 217
[3] Sterrett J S, Mcllvried H G.Kinetics of the oxidative dehydrogenation of butene to butadiene over a ferrite catalyst[J]. Ind. Eng. Chem. Process Des. Dev., 1974, 13(1): 54
[4] Tronconi E, Groppi G, Visconti C G.Structured catalysts for non-adiabatic applications[J]. Curr. Opin. Chem. Eng., 2014, 5: 55
[5] Liu Y, Edouard D, Nguyen L D, et al.High performance structured platelet milli-reactor filled with supported cobalt open cell SiC foam catalyst for the Fischer-Tropsch synthesis[J]. Chem. Eng. J., 2013, 222(8): 265
[6] Keller N, Pham-Huu C, Ledoux M J.Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint[J]. Appl. Catal. A Gen., 2001, 217(1-2): 205
[7] Li C, Xu H, Hou S, et al.SiC foam monolith catalyst for pressurized adiabatic methane reforming[J]. Appl. Energ., 2013, (107): 297
[8] Liu H, Yang D, Gao R., et al.A novel Na2WO4-Mn/SiC monolithic foam catalyst with improved thermal properties for the oxidative coupling of methane[J]. Catal. Commun., 2008, 9(6): 1302
[9] Yuan H, Sun Z, Liu H, et al.Immobilizing Carbon Nanotubes on SiC Foam as a Monolith Catalyst for Oxidative Dehydrogenation Reactions[J]. Chemcatchem, 2013, 5(7): 1713
[10] Wei W, Cao X M, Tian C, et al.The influence of Si distribution and content on the thermoelectric properties of SiC foam ceramics[J]. Micropor. Mesopor.Mater., 2008, 112(1-3): 521
[11] Jiao Y L, Jiang C H, Yang Z M, et al.Controllable synthesis of ZSM-5 coatings on SiC foam support for MTP application[J]. Micropor. Mesopor. Mater., 2012, 162(6): 152
[12] Zheng C W.High temperature oxidation behaviour of several silicon carbide ceramics processed by reaction bonding method [D]. Shenyang: Chinese Academy of Sciences, 2010(郑传伟. 几种反应烧结碳化硅陶瓷材料的高温氧化行为研究[D]. 沈阳: 中国科学院金属研究所, 2010)
[13] Fang J Z, Xu C F.Study of three kinds of XRD quantitative analysis methods[J]. Coal conversion. 2010, 33(2): 88(房俊卓, 徐崇福. 三种X射线物相定量分析方法对比研究[J]. 煤炭转化, 2010, 33(2): 88)
[14] Park J H, Noh H, Ji W P, et al. Effects of iron content on bismuth molybdate for the oxidative dehydrogenation of n-butenes to 1, 3-butadiene[J]. Appl. Catal. A Gen., 2012, s 431-432(29): 137
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.