Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 833-838    DOI: 10.11901/1005.3093.2016.736
  研究论文 本期目录 | 过刊浏览 |
T10钢的干滑动摩擦学行为与晶粒尺寸的关系
周路海1, 韦习成1(), 王春燕1, 鲁军2, 王武荣1
1 上海大学材料科学与工程学院上海 200072。
2 苏州华碧微科检测技术有限公司苏州 215024。
Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel
Luhai ZHOU1, Xicheng WEI1(), Chunyan WANG1, Jun LU2, Wurong WANG1
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
2 The FALAB Test Co., Ltd, Suzhou 215024, China.
引用本文:

周路海, 韦习成, 王春燕, 鲁军, 王武荣. T10钢的干滑动摩擦学行为与晶粒尺寸的关系[J]. 材料研究学报, 2017, 31(11): 833-838.
Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. Chinese Journal of Materials Research, 2017, 31(11): 833-838.

全文: PDF(2791 KB)   HTML
摘要: 

使用面面接触的盘-销试验机研究T10钢与涤纶配副的干滑动摩擦学性能,分析了钢的磨损行为与奥氏体晶粒尺寸的关系。结果表明,T10钢的奥氏体晶粒尺寸从1次淬火的32 μm减小到5次淬火的约5 μm,强度和韧性得到明显提高,而其应变硬化指数略有减小。晶粒细化基本上不影响T10钢与涤纶配副的干滑动摩擦系数,但是其耐磨性明显提高。具有较小应变硬化指数的细晶钢的磨损表面优良的摩擦诱发硬化特性,是其耐磨性提高的主要原因。T10钢的磨损机理,主要是犁削伴随的轻微接触疲劳磨损。

关键词 材料失效与保护摩擦学性能T10钢晶粒尺寸应变硬化指数    
Abstract

The relationship between the dry sliding tribological performance of T10 steel disc against polyester pin in surface contact and the austenite grain size of the steel was investigated using a MM-W1 universal tester. The results show that the austenite grain size of T10 steel after five cycle-quenching is only 5 μm, which is much smaller than 32 μm of the one after one cycle-quenching. Grain refinement efficiently improves the strength and toughness of the steel,while slightly decreases its strain-hardening index. Although the grain refinement does not enhance the hardness of the steel but decrease the friction coefficient of friction couples of polyester/T10 steel, therewith the wear resistance of the steel increases remarkably. It is thought that the wear resistance improvement of T10 steel with fine grain and lower strain-hardening capability is benefited from the strong friction-induced hardening of the worn surface layer. The wear mechanism is mainly plough wear with accompanying slight contact fatigue wear.

Key wordsmaterial failure and protection    tribological properties    T10 steel    grain size    strain hardening
收稿日期: 2016-12-17     
基金资助:资助项目国家自然科学基金(50975166, 51475280)
作者简介:

周路海,男,1979年生,博士,讲师

Sample Quenching parameter Tempering condition
1 780℃×15 min by 1 time, oil quenching 180℃×120 min
2 780℃×15 min by 3 times, oil quenching 180℃×120 min
3 780℃×15 min by 5 times, oil quenching 180℃×120 min
表1  T10钢的淬回火工艺
图1  不同次数淬火的T10钢的奥氏体晶粒
Quenching time Grain size/mm Hardness,
HV0.3
Impact toughness/J·cm-2 Yield strength/MPa Tensile strength/MPa Uniform elongation /% Strain hardening exponent, n
1 32 761 28.9 785 1220 8.7 0.225
3 12 758 33.2 847 1275 10.2 0.203
5 5 773 42.5 954 1353 9.1 0.193
表2  T10钢的晶粒尺寸和力学性能
图2  摩擦系数随试验时间的变化
图3  不同晶粒尺寸的试样的磨损量与正压力的关系
图4  不同晶粒尺寸的试样磨损前后的表面硬度
图5  70 N正压力下不同晶粒尺寸的T10钢的磨损表面形貌
[1] Chi Y.Textile project report in National Science and Technology Conferencex[J]. China Textile & Apparel, 2006, (3): 90(池羽. 挑战前沿创造价值: 全国科学技术大会纺织获奖项目报道[J]. 中国纺织, 2006, (3): 90)
[2] Yao S J, Du L X, Liu X H, et al.Evolution of ultra-fine austenite grains in Nb and Nb-V-Ti microalloyed low carbon steel under cyclic heating-quenching treatment[J]. Trans. Mater. Heat Treatment, 2009, 30(5): 50(姚圣杰, 杜林秀, 刘相华等. 循环加热-淬火工艺下超细晶奥氏体的晶粒演变特征[J]. 材料热处理学报, 2009, 30(5): 50)
[3] Morito S, Huang X, Furuhara T, et al.The morphology and crystallography of lath martensite in alloy steels[J]. Acta Mater., 2006, 54: 5323
[4] Hui W J, Dong H, Wen Y Q, et al.Delayed fracture behavior of ultrafine grained high strength steel[J]. Acta Metall. Sin., 2004, 40: 561(惠卫军, 董瀚, 翁宇庆等. 超细晶粒高强度钢的延迟断裂行为[J]. 金属学报, 2004, 40: 561)
[5] Liu Y J, Li Y M, Tan Y H, et al.Apparent morphologies and nature of packet martensite in high carbon steels[J]. J. Iron Steel Res. Int., 2006, 13: 40
[6] Liu A M, Wang X H, Qin X P, et al.Study of improvement of performance of Cr12MoV in fine blanking mold with fast cyclic heat treatment[J]. New Technol. New Process, 2010, (12): 67(刘安民, 汪新衡, 秦小平等. 快速循环热处理提高Cr12MoV钢精冲模具性能的研究[J]. 新技术新工艺, 2010, (12): 67)
[7] Ba D M, Meng F J, Sun X F, et al.Friction and wear behaviors of nanocrystalline surface layer prepared on deposited layer[J]. Tribology, 2014, 34: 120(巴德玛, 孟凡军, 孙晓峰等. 堆焊熔敷层表面纳米晶层摩擦磨损性能研究[J]. 摩擦学学报, 2014, 34: 120)
[8] Bregliozzi G, Di Schino A, Kenny J M, et al.The influence of atmospheric humidity and grain size on the friction and wear of AISI 304 austenitic stainless steel[J]. Mater. Lett., 2003, 57: 4505
[9] Hao W X, Yang G C, Xie H, et al.Rapid solidification behavior and microstructure of highly undercooled Cu-Pb monotectic alloy melts[J]. Chin. J. Mater. Res., 2004, 18: 357(郝维新, 杨根仓, 谢辉等. 深过冷Cu-Pb偏晶合金的快速凝固行为和凝固组织[J]. 材料研究学报, 2004, 18: 357)
[10] Jain A, Basu B, Manoj Kumar B V. Grain size-wear rate relationship for titanium in liquid nitrogen environment[J]. Acta Mater., 2010, 58: 2313
[11] Wasekar N P, Haridoss P, Seshadri S K, et al.Sliding wear behavior of nanocrystalline nickel coatings: Influence of grain size[J]. Wear, 2012, 296: 536
[12] Panagopoulos C N, Georgarakis K G, Anagnostopoulou A.The influence of grain size on the sliding wear behaviour of zinc[J]. Mater. Lett., 2006, 60: 133
[13] Wei Y Q, Tian X B, Gong C Z, et al.Effect of pulsed bias voltage on the microstructures and properties of TiN/TiAlN multilayer coatings[J]. Chin. J. Mater. Res., 2011, 25: 630(魏永强, 田修波, 巩春志等. 脉冲偏压幅值对TiN/TiAlN多层薄膜微观结构和性能的影响[J]. 材料研究学报, 2011, 25: 630)
[14] Lv D Z, Chen Z K, Xiong X, et al.Microstructure and tribological property of C-TaC coatings on graphite prepared by chemical vapor deposition[J]. Chin. J. Mater. Res., 2016, 30: 690(吕东泽, 陈招科, 熊翔等. 化学气相沉积C-TaC涂层的结构及其摩擦性能[J]. 材料研究学报, 2016, 30: 690)
[15] Das D, Dutta A K, Ray K K.Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel[J]. Wear, 2009, 267: 1371
[16] Lu J, Wang C Y, Cai Y Q, et al.Effect of cyclic quenching-tempering process on impact toughness of 90CrMnTi steel[J]. Trans. Mater. Heat Treatment, 2014, 35(1): 71(鲁军, 王春燕, 蔡叶青等. 循环淬火-回火处理对90CrMnTi钢冲击韧性的影响[J]. 材料热处理学报, 2014, 35(1): 71)
[17] Xu L J, Wei S Z, Xing J D, et al.Effect of hardness and impact toughness on wear stability of high-vanadium high-speed steel[J]. Tribology, 2006, 26: 377(徐流杰, 魏世忠, 邢建东等. 硬度及冲击韧性对高钒高速钢磨损稳定性的影响[J]. 摩擦学学报, 2006, 26: 377)
[18] Song Y Q, Guan Z P, Ma P K, et al.Theoretical and experimental standardization of strain hardening index in tensile deformation[J]. Acta Metall. Sin., 2006, 42: 673(宋玉泉, 管志平, 马品奎等. 拉伸变形应变硬化指数的理论和实验规范[J]. 金属学报, 2006, 42: 673)
[19] Habig K H.Wear and Hardness of Materials [M]. Beijing: China Machine Press, 1987: 159(哈比希K H. 材料的磨损与硬度 [M]. 北京: 机械工业出版社, 1987: 159)
[1] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] 宁博, 李志超, 武会宾, 张丙军, 黄曼丽, 丁超. 改善09MnNi容器钢低温冲击韧性的机理[J]. 材料研究学报, 2022, 36(9): 660-666.
[3] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[4] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[5] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 淬火冷却速率对海洋平台用Ni-Cr-Mo-B钢性能的影响[J]. 材料研究学报, 2022, 36(4): 250-260.
[6] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[7] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[8] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[10] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[11] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[12] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[13] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[14] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[15] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.