|
|
ЭП866耐热马氏体不锈钢的激光冲击温强化特性 |
张青来1, 何袁圆1, 张冰昕2 |
1 江苏大学材料科学与工程学院镇江 212013。 2 上海交通大学密西根学院上海 200240。 |
|
Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel |
Qinglai ZHANG1, Yuanyuan HE1, Bingxin ZHANG2 |
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China. 2 University of Michigan-Shanghai Jiao Tong University, Shanghai 200240, China. |
引用本文:
张青来, 何袁圆, 张冰昕. ЭП866耐热马氏体不锈钢的激光冲击温强化特性[J]. 材料研究学报, 2017, 31(11): 827-832.
Qinglai ZHANG,
Yuanyuan HE,
Bingxin ZHANG.
Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel[J]. Chinese Journal of Materials Research, 2017, 31(11): 827-832.
[1] | Sun T F, Li X M, Song X Y, et al.The influence of forging technology on the structure and property of 1Cr16Co5Ni2Mo1WVNbN steel[J]. J. Shenyang Aerosp. Univ., 2012, 29(3): 38(孙铁峰, 李许明, 宋玺玉等. 锻造工艺对1Cr16Co5Ni2Mo1WVNbN钢组织和性能的影响[J]. 沈阳航空航天大学学报, 2012, 29(3): 38) | [2] | Guo S J, Yan W, Zhang X L.Influence on the microstructure and properties of the chemical composition of martensitic stainless steel ЭП 866[J]. Sci. Technol. Eng., 2010, 10: 3471(郭淑娟, 闫伟, 张秀丽. 化学成分对马氏体不锈钢ЭП866组织与性能的影响[J]. 科学技术与工程, 2010, 10: 3471) | [3] | Yang G, Liu Z D, Cheng S C, et al.Effect of heat treatment on impact toughness of heat-resistant steel ЭП866[J]. J. Iron Steel Res., 2002, 14(5): 30(杨钢, 刘正东, 程世长等. 热处理工艺对耐热钢ЭП866冲击韧性的影响[J]. 钢铁研究学报, 2002, 14(5): 30) | [4] | Zhao X D, Bian L H, Sun G D, et al.Effect of forging technics on ЭП866 alloy structure and proparty[J]. J. Shenyang Inst. Aeronaut. Eng., 2004, 21(4): 32(赵兴东, 边丽虹, 孙贵东等. 锻造工艺对ЭП866合金组织和性能的影响[J]. 沈阳航空工业学院学报, 2004, 21(4): 32) | [5] | Wang C, Lai Z B, He W F, et al.Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chin. J. Lasers, 2014, 41: 0103001(汪诚, 赖志斌, 何卫锋等. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41: 0103001) | [6] | Ye C, Liao Y L, Cheng G J.Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Adv. Eng. Mater., 2010, 12: 291 | [7] | Ye C, Suslov S, Kim B J, et al.Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Mater., 2011, 59: 1014 | [8] | Liao Y L, Suslov S, Ye C, et al.The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance[J]. Acta Mater., 2012, 60: 4997 | [9] | Zhang Q L, Wu T D, Zhang B X, et al.Experimental research of warm laser shock forming of AZ31 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 0903002(张青来, 吴铁丹, 张冰昕等. AZ31镁合金激光冲击温成形实验研究[J]. 中国激光, 2015, 42: 0903002) | [10] | Zhang Q L, Zhang Q, Zhang B X, et al.Study on characteristic of warm laser shock peening of AZ80-T6 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 1006002(张青来, 张乔, 张冰昕等. AZ80-T6镁合金激光冲击温强化特性研究[J]. 中国激光, 2015, 42: 1006002) | [11] | Zhang Q L, Liu H, Zhang B X, et al.Warm Laser shock peening and low cycle fatigue behavior of extruded AZ80-T6 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 1103004(张青来, 刘惠, 张冰昕等. AZ80-T6挤压镁合金激光冲击温强化和低周疲劳行为[J]. 中国激光, 2015, 42: 1103004) | [12] | Liao Y L, Ye C, Cheng G J.Nucleation of highly dense nanoscale precipitates based on an innovative process: warm laser shock peening [A]. ASME 2010 International Manufacturing Science and Engineering Conference[C]. Erie, Pennsylvania, USA: ASME, 2010: 291 | [13] | Ye C, Liao Y L, Suslov S, et al.Ultrahigh dense and gradient Nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Mater. Sci. Eng., 2014, 609A: 195 | [14] | Liao Y L, Ye C, Gao H, et al.Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments[J]. J. Appl. Phys., 2011, 110: 023518 | [15] | Ye C, Lin D, Liao Y L, et al.Effect of warm laser shock peening on the tensile strength and ductility of aluminum alloys [A]. ASME 2012 International Manufacturing Science and Engineering Conference[C]. Notre Dame, Indiana, USA: ASME, 2012: 533 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|