Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (11): 827-832    DOI: 10.11901/1005.3093.2016.561
  研究论文 本期目录 | 过刊浏览 |
ЭП866耐热马氏体不锈钢的激光冲击温强化特性
张青来1, 何袁圆1, 张冰昕2
1 江苏大学材料科学与工程学院镇江 212013。
2 上海交通大学密西根学院上海 200240。
Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel
Qinglai ZHANG1, Yuanyuan HE1, Bingxin ZHANG2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
2 University of Michigan-Shanghai Jiao Tong University, Shanghai 200240, China.
引用本文:

张青来, 何袁圆, 张冰昕. ЭП866耐热马氏体不锈钢的激光冲击温强化特性[J]. 材料研究学报, 2017, 31(11): 827-832.
Qinglai ZHANG, Yuanyuan HE, Bingxin ZHANG. Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel[J]. Chinese Journal of Materials Research, 2017, 31(11): 827-832.

全文: PDF(5564 KB)   HTML
摘要: 

使用钕玻璃脉冲激光器对航空发动机用耐热马氏体不锈钢进行ЭП866激光冲击温强化(WLSP)实验,使用X射线应力测定仪和透射电子显微镜分析了冲击表层的微观结构和性能。结果表明:与激光冲击强化(LSP)相比,WLSP有明显的温强化效应。动态应变时效(DSA)和动态析出(DP)结果表明:WLSP使不锈钢表层产生了更高幅值的残余压应力,析出了具有更高密度的位错结构和纳米级的析出相。

关键词 金属材料ЭП866不锈钢,激光冲击温强化残余压应力表面硬度动态应变时效    
Abstract

The warm laser shock peening (WLSP) of heat resistant martensite stainless steel ЭП866 was carried out by Nd glass pulse laser, and the microstructure and properties of the impacted layer were assessed by transmission electron microscopy and X-ray stress analyzer. The results show that WLSP has obvious strengthening effect compared to LSP at room temperature. Through dynamic strain aging (DSA) and dynamic precipitation (DP), the WLSP generates higher compressive residual stress, higher density dislocation structures and nano-scale precipitates on the impacted layer of the treated steel ЭП866.

Key wordsmetallic materials,    ЭП866 stainless steel    WLSP    compressive residual stress    surface hardness    DSA
收稿日期: 2016-09-26     
基金资助:资助项目国家自然科学基金(51175231)
作者简介:

张青来,男,1962年生,教授,博士

Elements Fe C Mn Si S P Ni Cr W V Mo N Nb Co
Content 73.9 0.16 0.27 0.25 0.003 0.010 2.02 15.57 0.76 0.23 1.47 0.0665 0.29 5.0
表1  ЭП866不锈钢的化学成分
图1  WLSP实验装置的示意图
图2  热处理后ЭП866马氏体不锈钢的金相组织和SEM照片
图3  热处理后ЭП866马氏体不锈钢的TEM照片
图4  ЭП866不锈钢经LSP 后的TEM照片
图5  ЭП866不锈钢经WLSP后的TEM照片
Surface state Point 1 Point 2 Point 3 Non-LSP zone
Room LSP -388±39 -410±29 -387±40 -334±18
WLSP at 300℃ -415±15 -409±11 -469±24 -119±10
表2  单光斑冲击区ЭП866不锈钢的表面残余应力
Surface state Point 1 Point 2 Point 3 Mean value
Non-LSP zone 344.4 347.6 341.9 344.0
Room LSP 372.8 363.3 379.0 371.7
WLSP at 300℃ 394.2 397.0 401.1 397.4
表3  单光斑冲击区ЭП866不锈钢表面的显微硬度
[1] Sun T F, Li X M, Song X Y, et al.The influence of forging technology on the structure and property of 1Cr16Co5Ni2Mo1WVNbN steel[J]. J. Shenyang Aerosp. Univ., 2012, 29(3): 38(孙铁峰, 李许明, 宋玺玉等. 锻造工艺对1Cr16Co5Ni2Mo1WVNbN钢组织和性能的影响[J]. 沈阳航空航天大学学报, 2012, 29(3): 38)
[2] Guo S J, Yan W, Zhang X L.Influence on the microstructure and properties of the chemical composition of martensitic stainless steel ЭП 866[J]. Sci. Technol. Eng., 2010, 10: 3471(郭淑娟, 闫伟, 张秀丽. 化学成分对马氏体不锈钢ЭП866组织与性能的影响[J]. 科学技术与工程, 2010, 10: 3471)
[3] Yang G, Liu Z D, Cheng S C, et al.Effect of heat treatment on impact toughness of heat-resistant steel ЭП866[J]. J. Iron Steel Res., 2002, 14(5): 30(杨钢, 刘正东, 程世长等. 热处理工艺对耐热钢ЭП866冲击韧性的影响[J]. 钢铁研究学报, 2002, 14(5): 30)
[4] Zhao X D, Bian L H, Sun G D, et al.Effect of forging technics on ЭП866 alloy structure and proparty[J]. J. Shenyang Inst. Aeronaut. Eng., 2004, 21(4): 32(赵兴东, 边丽虹, 孙贵东等. 锻造工艺对ЭП866合金组织和性能的影响[J]. 沈阳航空工业学院学报, 2004, 21(4): 32)
[5] Wang C, Lai Z B, He W F, et al.Effect of multi-impact on high cycle fatigue properties of 1Cr11Ni2W2MoV stainless steel subject to laser shock processing[J]. Chin. J. Lasers, 2014, 41: 0103001(汪诚, 赖志斌, 何卫锋等. 激光冲击次数对1Cr11Ni2W2MoV不锈钢高周疲劳性能的影响[J]. 中国激光, 2014, 41: 0103001)
[6] Ye C, Liao Y L, Cheng G J.Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160[J]. Adv. Eng. Mater., 2010, 12: 291
[7] Ye C, Suslov S, Kim B J, et al.Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Mater., 2011, 59: 1014
[8] Liao Y L, Suslov S, Ye C, et al.The mechanisms of thermal engineered laser shock peening for enhanced fatigue performance[J]. Acta Mater., 2012, 60: 4997
[9] Zhang Q L, Wu T D, Zhang B X, et al.Experimental research of warm laser shock forming of AZ31 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 0903002(张青来, 吴铁丹, 张冰昕等. AZ31镁合金激光冲击温成形实验研究[J]. 中国激光, 2015, 42: 0903002)
[10] Zhang Q L, Zhang Q, Zhang B X, et al.Study on characteristic of warm laser shock peening of AZ80-T6 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 1006002(张青来, 张乔, 张冰昕等. AZ80-T6镁合金激光冲击温强化特性研究[J]. 中国激光, 2015, 42: 1006002)
[11] Zhang Q L, Liu H, Zhang B X, et al.Warm Laser shock peening and low cycle fatigue behavior of extruded AZ80-T6 magnesium alloy[J]. Chin. J. Lasers, 2015, 42: 1103004(张青来, 刘惠, 张冰昕等. AZ80-T6挤压镁合金激光冲击温强化和低周疲劳行为[J]. 中国激光, 2015, 42: 1103004)
[12] Liao Y L, Ye C, Cheng G J.Nucleation of highly dense nanoscale precipitates based on an innovative process: warm laser shock peening [A]. ASME 2010 International Manufacturing Science and Engineering Conference[C]. Erie, Pennsylvania, USA: ASME, 2010: 291
[13] Ye C, Liao Y L, Suslov S, et al.Ultrahigh dense and gradient Nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Mater. Sci. Eng., 2014, 609A: 195
[14] Liao Y L, Ye C, Gao H, et al.Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: Dislocation dynamic simulation and experiments[J]. J. Appl. Phys., 2011, 110: 023518
[15] Ye C, Lin D, Liao Y L, et al.Effect of warm laser shock peening on the tensile strength and ductility of aluminum alloys [A]. ASME 2012 International Manufacturing Science and Engineering Conference[C]. Notre Dame, Indiana, USA: ASME, 2012: 533
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.