Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (9): 672-678    DOI: 10.11901/1005.3093.2016.416
  研究论文 本期目录 | 过刊浏览 |
X90管线钢表面CuO超疏水涂层的制备和性能
韩祥祥, 于思荣(), 李好, 胡锦辉
中国石油大学(华东)机电工程学院 青岛 266580
Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel
Xiangxiang HAN, Sirong YU(), Hao LI, Jinhui HU
College of Mechanical and Electronic Engineering,China University of Petroleum,Qingdao 266580,China
引用本文:

韩祥祥, 于思荣, 李好, 胡锦辉. X90管线钢表面CuO超疏水涂层的制备和性能[J]. 材料研究学报, 2017, 31(9): 672-678.
Xiangxiang HAN, Sirong YU, Hao LI, Jinhui HU. Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel[J]. Chinese Journal of Materials Research, 2017, 31(9): 672-678.

全文: PDF(1106 KB)   HTML
摘要: 

用电沉积方法在X90管线钢表面制备Cu保护层,经水热反应及全氟辛酸修饰后制备出CuO超疏水涂层。使用X射线衍射仪、扫描电子显微镜、红外光谱仪和接触角测量仪等手段对涂层表面的相组成、微观形貌、化学成分及润湿性进行表征,研究了涂层的机械稳定性、防粘附性和耐腐蚀性。结果表明,具有疏水性的全氟辛酸成功嫁接到了由“花瓣”状CuO组成的微纳米混合结构上,使涂层表面与水滴的接触角约为161.24°,滚动角为3°左右;这种涂层表面表现出良好的机械稳定性、防粘附性和耐腐蚀性。

关键词 金属材料超疏水机械稳定性防粘附耐腐蚀    
Abstract

Superhydrophobic coating of CuO was prepared on X90 pipeline steel substrate by a three step process, i.e. first a Cu protective layer was electrodeposited on the substrate, which then was treated by hydrothermal reaction and finally modified with perfluorooctanoic solution. The phase constitution, microstructure, chemical composition, and wettability of the coating were investigated by X-ray diffractometer, scanning electron microscope, Fourier transform infrared spectrometer, and contact angle tester. Its mechanical stability, anti-adhesion behavior and corrosion resistance were also examined. The results show that the perfluorooctanoic was successfully grafted on the surface of coating consisted of petal-like CuO with micro-nano hybrid structure. The contact angle of water to the coating surface was 161.24°, and the sliding angle was about 3°. Meanwhile, the as-prepared coating surface exhibits excellent mechanical stability, anti-adhesion behavior and corrosion resistance.

Key wordsmetallic materials    superhydrophobic    mechanical stability    anti-adhesion    corrosion resistance
收稿日期: 2016-07-19     
ZTFLH:  TB34  
基金资助:国家自然科学基金(51075184)
作者简介:

作者简介 韩祥祥,男,1991年生,硕士

图1  不同处理阶段涂层的表面形貌和润湿性
图2  水热反应前后涂层表面的XRD图谱
图3  全氟辛酸及修饰后涂层表面的FT-IR图谱
图4  磨损测试的示意图以及CuO超疏水涂层表面接触角和滚动角与磨损距离的关系
图5  磨损1000 mm后CuO超疏水涂层的表面形貌
图6  3 μL水滴与CuO超疏水涂层表面接触、挤压和离开的过程
图7  CuO超疏水涂层表面的自清洁过程
图8  水滴吸附并带走CuO超疏水涂层表面的污染物颗粒
图9  X90管线钢、Cu涂层、CuO涂层以及CuO超疏水涂层的动电位极化曲线
Sample Ecorr /V Icorr / Acm-2
X90 pipeline steel -0.6635 1.626×10-4
Cu coating -0.3101 2.099×10-5
CuO coating -0.3263 1.707×10-5
CuO superhydrophobic
coating
-0.0374 5.405×10-6
表1  不同阶段表面动电位极化曲线的相关电化学参数
[1] Sarkar D K, Farzaneh M, Paynter R W.Wetting and superhydrophobic properties of PECVD grown hydrocarbon and fluorinated-hydrocarbon coatings[J]. Appl. Surf. Sci., 2010, 256(11): 3698
[2] Zhang Y, Pi P H, Wen X F, et al.Construction and application of wettability gradient surfaces[J]. Prog. Chem., 2011, 23(12): 2457(张勇, 皮丕辉, 文秀芳等. 梯度接触角表面的构建与应用[J]. 化学进展, 2011, 23(12): 2457)
[3] Chaudhary A, Barshilia H C.Nanometric multiscale rough CuO/Cu(OH)2 superhydrophobic surfaces prepared by a facile one-step solution-immersion process: transition to superhydrophilicity with oxygen plasma treatment[J]. J. Phys. Chem. C, 2011, 115(37), 18213
[4] Liu W Y, Luo Y T, Sun L Y, et al.Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating[J]. Appl. Surf. Sci., 2013, 264(1): 872
[5] Sun X D, Liu G, Li L Y, et al.Preparation and properties of superhydrophobizted sprayed Zn-Al coating[J]. Chin. J. Mater. Res., 2015, 29(7): 523(孙小东, 刘刚, 李龙阳等. 热喷涂锌铝合金超疏水涂层的制备及性能[J]. 材料研究学报, 2015, 29(7): 523)
[6] Li L Y, Li Y X, Zeng Z X, et al.Preparation of super-hydrophobic Zn-Al alloy coating and self-assembled siloxane by arc spraying[J]. China Surface Engineering, 2014, 27(6): 50(李龙阳, 李玉新, 曾志翔等. 电弧喷涂Zn-Al合金与硅氧烷自组装制备超疏水涂层[J]. 中国表面工程, 2014, 27(6): 50)
[7] Wang T C, Chang L J, Zhuang L M, et al.A hierarchical and superhydrophobic ZnO/C surface derived from a rice-leaf template[J]. Monatsh. Chem., 2013, 145(1): 65
[8] Ganesh V A, Dinachali S S, Nair A S, et al.Robust superamphiphobic film from electrospun TiO2 nanostructures[J]. ACS Appl. Mat. Interfaces, 2013, 5(5): 1527
[9] Li Y, Zhu X T, Zhou X Y, et al.A facile way to fabricate a superamphiphobic surface[J]. Appl. Phys. A, 2014, 115(3): 765
[10] Parale V G, Mahadik D B, Kavale M S, et al.Sol-gel preparation of PTMS modified hydrophobic and transparent silica coatings[J]. J. Porous Mater., 2013, 20(4): 733
[11] Nayak B K, Caffrey P O, Speck C R, et al.Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Appl. Surf. Sci., 2013, 266(2): 27
[12] Li W, Kang Z X.Fabrication of corrosion resistant superhydrophobic surface with self-cleaning property on magnesium alloy and its mechanical stability[J]. Surf. Coat. Technol., 2014, 253(25): 205
[13] Wang H Y, Meng Y, Zhao J Y, et al.New progress on preparation and properties of amphiphobic surface[J]. J. Mater. Eng., 2014, (3): 90(汪怀远, 孟旸, 赵景岩等. 双疏表面的制备及性能研究新进展[J]. 材料工程, 2014, (3): 90)
[14] Li P P, Chen X H, Yang G B, et al.Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil[J]. Appl. Surf. Sci., 2014, 300(5): 184
[15] Shi L Q, Niu H, Yang J, et al.Research on structure-properties of large diameter X90 pipeline steel produced by JCOE technological parameters[J]. Hot Working Technology, 2015, 44(3): 226(史立强, 牛辉, 杨军等. 大口径JCOE工艺生产X90管线钢组织与性能的研究[J]. 热加工工艺, 2015, 44(3): 226)
[16] Yuan Z Q, Bin J P, Wang X, et al.Fabrication of superhydrophobic surface with hierarchical multi-scale structure on copper foil[J]. Surf. Coat. Technol., 2014, 254(10): 151
[17] Fan Y H, Li C Z, Chen Z J, et al.Study on fabrication of the superhydrophobic sol-gel films based on copper wafer and its anti-corrosive properties[J]. Appl. Surf. Sci., 2012, 258(17): 6531
[18] Wang P, Zhang D, Qiu R, et al.Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium[J]. Corros. Sci., 2014, 83(3): 317
[19] She Z X, Li Q, Wang Z W, et al.Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J]. Chem. Eng. J., 2013, 228(28): 415
[20] Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem. C, 2011, 115(11): 4726
[21] Mihaly J, Sterkel S, Ortner H M, et al.FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels[J]. Croat. Chem. Acta, 2006, 79(3): 497
[22] Milionis A, Martiradonna L, Anyfantis G C, et al.Control of the water adhesion on hydrophobic micropillars by spray coating technique[J]. Colloid. Polym. Sci., 2013, 291(2): 401
[23] Su F H, Yao K.Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method[J]. ACS Appl. Mat. Interfaces, 2014, 6(11): 8762
[24] Sun Q H, Liu H T, Chen T C, et al.Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath[J]. Appl. Surf. Sci., 2016, 369: 277
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.