Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 121-129    DOI: 10.11901/1005.3093.2023.186
ARTICLES Current Issue | Archive | Adv Search |
Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel
HAO Wenjun1, JING Hemin1(), XI Tong2(), YANG Chunguang2, YANG Ke2
1.School of Materials Science and Engineering. Anhui University of Technology, Ma Anshan 243000, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research. Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel. Chinese Journal of Materials Research, 2024, 38(2): 121-129.

Download:  HTML  PDF(18389KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of copper (Cu) addition on the microstructure, mechanical properties and corrosion resistance of high carbon Cu-bearing martensitic stainless steels, being subjected to austenitizing treatment at different temperatures was investigated by means of optical microscopy (OM), scanning electron microscope, (SEM), X-Ray diffraction (XRD), electron back scattered diffraction (EBSD) and transmission electron microscope (TEM). The results show that the fraction of carbides decreases and the content of retained austenite increases gradually with the increase of austenitizing temperature. The addition of Cu has a positive effect on the amount of precipitation for small size carbides, which distributed in the matrix, and increases the retained austenite significantly. The hardness of high carbon Cu-bearing martensitic stainless steel decreases slightly after Cu addition, because the softening effect of retained austenite is greater than the strengthening effect of martensite. Meanwhile, the impact absorption energy increase from 1.5 J to 9.1 J, indicating that the toughness of the steel was enhanced significantly. Besides, the free-corrosion potential of the Cu-bearing stainless steels decreases due to the increase of retained austenite volume fraction.

Key words:  metallic materials      martensitic stainless steel      austenitizing temperature      hardness      corrosion resistance      retained austenite     
Received:  20 March 2023     
ZTFLH:  TG161  
Fund: National Natural Science Foundation(52101293)
Corresponding Authors:  XI Tong, Tel: (024)23971899, E-mail: txi@imr.ac.cn;
JING Hemin, Tel: (0555)2311570, E-mail: jinghemin@.ahut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.186     OR     https://www.cjmr.org/EN/Y2024/V38/I2/121

MaterialsCSiCrMoVCuFe
8Cr18MoV0.870.4817.840.890.10-Bal.
8Cr18MoV-2.0Cu0.790.5117.970.930.102.00Bal.
8Cr18MoV-3.1Cu0.800.4917.620.870.103.10Bal.
Table 1  Chemical compositions of the experimental steels (mass fraction, %)
Fig.1  Optical morphologies of 8Cr18MoV (a~d) and 8Cr18MoV-3.1Cu (e~h) with different austenite temperatures (a, e) 975oC, (b, f) 1025oC, (c, g) 1075oC, (d, h) 1125oC
Fig.2  SEM morphologies of 8Cr18MoV (a~d), 8Cr18MoV-2.0Cu (e~h) and 8Cr18MoV-3.1Cu (i~l) with different austenite temperatures (a, e, i) 975oC, (b, f, j) 1025oC, (c, g, k) 1075oC, (d, h, l) 1125oC
Fig.3  Change trends of carbides content (a), nano-sized carbides with different austenite temperature (b) and type of carbides austenized at 1075oC for 8Cr18MoV and 8Cr18MoV-3.1Cu (c)
Fig.4  Microstructure of carbide in 8Cr18MoV-2.0Cu with 1075oC austenite temperature observed by TEM
Fig.5  XRD spectra of 8Cr18MoV (a), 8Cr18MoV-2.0Cu (b), 8Cr18MoV-3.1Cu (c) and the change trends of retained austenite content with different temperatures (d)
Fig.6  IPF and phase content for experimental steels with austenite temperature at 1075oC (a, d) 8Cr18MoV, (b, e) 8Cr18MoV-2.0Cu, (c, f) 8Cr18MoV-3.1Cu
Fig.7  Variation of hardness (a) and impact energy (b) for experimental steels with different temperatures
Fig.8  Fracture morphologies of experimental steels (a, b) 8Ce18MoV, (c, d) 8Ce18MoV-2.0Cu, (e, f) 8Cr18MoV-3.1Cu
Fig.9  Potentiodynamic polarization curves (a) of 8Cr18MoV with different austenitizing temperatures and 8Cr18MoV-2.0Cu、8Cr18MoV-3.1Cu with 1075oC austenitizing temperatures and variation of Epit and Ecorr (b)
Materials (Temperature)Epit / mVEcorr / mV
8Cr18MoV—975oC-95.40-240.9
8Cr18MoV—1025oC-32.02-255.0
8Cr18MoV—1075oC53.93-215.7
8Cr18MoV—1125oC99.13-260.2
8Cr18MoV(2.0Cu)—1075oC40.37-253.9
8Cr18MoV(3.1Cu)—1075oC71.96-342.1
Table 2  Electrochemical parameters of experimental steels
1 Shen M D, Xiao C H, Jian Z, et al. Microstructure and mechanical properties of martensitic stainless steel 6CrlSMoV [J]. J. Iron Steel Res, 2012, 19(3): 56
doi: 10.1016/S1006-706X(12)60074-0
2 Cheng Y, Ding H, Zhu S G. Study on Strengthening Methods for cutting edge of 3Cr13 Stainless steel [J]. Hot Work. Technol., 2018, 47(4): 80
成 瑜, 丁 浩, 朱世根. 3Cr13不锈钢刃口的强化方法研究 [J]. 热加工工艺, 2018, 47(4): 80
3 Lian, Yong et al. Effect of tempering treatment on atmospheric corrosion behavior of 3Cr13 martensitic stainless steel in marine environment [J]. J. Mater. Eng. Perform., 2022, 31(6): 4963
doi: 10.1007/s11665-022-06597-8
4 Barlow L D. The effect of austenitising and tempering parameters on the microstructure and hardness of martensitic stainless steel AISI 420 [D]. University of Pretoria, 2010
5 Zhang E H, Zhang H L. Martensitic stainless steel development status and trends [J]. Coal Mine Machinery, 2014, 35(12): 16
张二红, 张华龙. 马氏体不锈钢发展现状与趋势 [J]. 煤矿机械, 2014, 35(12): 16
6 Zhu Q, Li J, Shi C, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 4313
doi: 10.1007/s11665-015-1723-7
7 Yao D. Evolution of the microstructure of high carbon martensitic stainless ateel used as a cutlery material during manufacturing process [D]. Beijing: University of Science and Technology Beijing. 2016
姚 迪. 刀剪用高碳马氏体不锈钢生产过程组织演变行为研究[D]. 北京: 北京科技大学, 2016
8 O'Brien J M, Hosford W F. Spheroidization cycles for medium carbon steels [J]. Metall. Mater. Trans. A., 2002, 33: 1255
9 Song H D, Li J, Shi C B, et al. Evolution of inclusions in 8Cr13MoV steel during ESR process [J]. Iron, 2016, 51(8): 41
宋惠东, 李 晶, 史成斌 等. 8Cr13MoV钢电渣重熔过程中夹杂物行为 [J]. 钢铁, 2016, 51(8): 41
10 Li H J, Wang B Q, Song X Y, et al. New spheroidizing technique of ultra-high carbon steel with aluminum addition [J]. J. Iron. Steel. Res., International: 2006, 13(3): 9
11 Li Y B, Wang F M, Li C R. Effect of Cerium on Grain in low chromium ferritic steinless steel [J]. Zhonggua Xitu Xuabao, 2009, 27(1): 123
李亚波, 王福明, 李长荣. 铈对低铬铁素体不锈钢晶粒和碳化物的影响 [J]. 中国稀土学报, 2009, 27(1): 123
12 Čatipović N, Živković D, Dadić Z, et al. Effect of copper and heat treatment on microstructure of austempered ductile iron [J]. Trans. Indian. Inst. Met., 2021, 74: 1455
doi: 10.1007/s12666-021-02225-6
13 Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2022, 35(12): 933
郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2022, 35(12): 933
14 Hao X, Xi T, Xu Z, et al. Effect of tempering temperature on the microstructure, corrosion resistance, and antibacterial properties of Cu-bearing martensitic stainless steel [J]. Materials and Corrosion, 2021, 72(10): 1668
15 Kim M, Lee K. Effect of heat treatment on microstructure, mechanical property and corrosion behavior of STS 440C martensitic stainless steel [J]. Korean J. Mater. Res., 2021, 31(1): 29
doi: 10.3740/MRSK.2021.31.1.29
16 Dong Z Y, Wang R, Kang Y, et al. Effect of high temperature homogenization on carbide morphology and mechanical properties of 1.3C-5Cr-0.7Mo-0.5V steel [J]. Heat Treat. Met., 2020, 45(12): 69
董子尧, 王 睿, 康 燕 等. 高温均匀化处理对1.3C-5Cr-0.7Mo-0.6V钢中碳化物形貌及力学性能的影响 [J]. 金属热处理, 2020, 45(12): 69
17 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
doi: 10.2320/matertrans.46.2817
18 Yao Mi. Effect of Cu、Si、on the content of retained austenite of austempered ductile iron [J]. Sceipta. Metall. Mater., 1995, 32(9): 1313
19 Luo L J, Hu K H. Effects of retained austenite on impact and wear property of ZG30CrMnSiMoNi steel [J]. Hor Work Technol., 2023, 52(12): 61
罗灵杰, 胡开华. 残余奥氏体对ZG30CrMnSiMoNi钢冲击和磨损性能的影响 [J]. 热加工工艺, 2023, 52(12): 61
20 Yang Y D. Research on microstructure evolution of cutlery used high carbon martensitic stainless steel [D]. Shanghai: Shanghai University, 2020
杨玉丹. 刀具用高碳马氏体不锈钢的组织演变研究 [D]. 上海: 上海大学, 2020
21 Bonagani, Sunil, Kumar, et al. Influence of tempering treatment on microstructure and pitting corrosion of 13wt.%Cr martensitic stainless steel [J]. Corros. Sci., 2018, (131): 340
22 Li H D, Zhang T Y, Liu W, et al. Effect of deep cryogenic treatment on microstructure and corrosion resistance of 440C martensitic stainless steel [J]. Heat Treat. Met. 2022(008)047: 152
李慧东, 张覃轶, 刘 伟 等. 深冷处理对440C马氏体不锈钢组织和耐蚀性的影响 [J]. 金属热处理, 2022(008)047: 152
[1] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[4] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
No Suggested Reading articles found!