Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (1): 43-50    DOI: 10.11901/1005.3093.2022.583
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting
QIN Yanli1, ZHAO Guangpu1, ZHANG Hao2(), NI Dingrui2(), XIAO Bolv2, MA Zongyi2
1 Shenyang Ligong University, College of Science, Shenyang 110158, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting. Chinese Journal of Materials Research, 2024, 38(1): 43-50.

Download:  HTML  PDF(13396KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The bulk material of the hyper-eutectic Al-30Si alloy was prepared via selective laser melting (SLM) technique, aiming to solve the problem of high brittleness, easy cracking, and difficulty in precise forming caused by the coarsening of primary Si in the alloy due to the coarsening of primary Si particles in the alloy during ordinary making process. Then the microstructure, mechanical properties, and thermal properties of the SLM alloy after stress-relief annealing were studied. The results showed that the room temperature tensile strength of the SLM Al-30Si alloy after annealing was 254 ± 3 MPa, which was 53.5% higher than that of the cast alloy. The hardness was 176.89 ± 8.5 HV and the specific stiffness was 35.18 m2/s2. In terms of thermal properties, the thermal expansion coefficient of the SLM Al-30Si alloy is 13.8 to 16.3 × 10-6/oC in the temperature range of -100~200oC, and the average thermal conductivity is 70.52 W·m-1·K-1. The study found that the rapid cooling characteristic of SLM could refine the primary Si particles, making the formed Al-30Si alloy have good comprehensive properties. The high specific stiffness and low thermal expansion coefficient are expected to maintain high dimensional stability for optical components.

Key words:  metallic materials      selective laser melting      Al-30Si alloy      microstructure      physical properties     
Received:  04 November 2022     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(U21A2043);National Natural Science Foundation of China(51871215);Youth Innovation Promotion Association, CAS(2022191);Bintech-IMR R&D Program(GYY-JSBU-2022-010);Key Research Project of Liaoning Provincial Department of Education(LJKZ0238)
Corresponding Authors:  ZHANG Hao, Tel: (024)23971752, E-mail: haozhang@imr.ac.cn;
NI Dingrui, Tel: (024)83970809, E-mail: drni@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.583     OR     https://www.cjmr.org/EN/Y2024/V38/I1/43

Fig.1  Powder morphology of Al-30Si (a), cross-sectional morphology of the powder (b)
Laser power / WScanning velocity / m·s-1Density / g·cm-3
2501.52.514
2751.52.528
3001.82.516
Table 1  Parameters and density of Al-30Si samples
Fig.2  XRD patterns of Al-30Si powder, as-built and annealed samples (a) and diffraction peaks at range of 37.5° to 39.5° (b)
Fig.3  Microstructure of SLM Al-30Si samples (a) xoy section of as-built sample, (b) xoz section of as-built sample, (c) xoz section of annealed sample
Fig.4  SEM microstructure of the Al-30Si sample fabricated by SLM (a, b) as-built, (c, d) annealed
MaterialsDensity / g·cm-3Elastic modulus / GPaSpecific stiffness / m2·s-2
Al[25]2.7068.0025.19
TC4[25]4.40114.0025.91
Mg-Al alloy[25]1.8040.0022.22
AlSi10Mg[26]2.6271.0027.10
Al-30Si in this study2.5389.0035.18
Table 2  Specific stiffness of commonly used materials for optical instruments
Fig.5  Tensile property of Al-30Si alloy
Fig.6  Tensile fracture morphologies of annealed samples (a) macroscopic morphology, (b) enlarged fracture morphology, (c) incomplete fusion defect, (d) cross-sectional microstructure along tensile direction
Fig.7  Coefficient of thermal expansion of annealed Al-30Si alloy
Fig.8  Thermal conductivity of annealed Al-30Si alloy
1 Zhuo X, Xu H, Wu Y, et al. Effect of eutectic Si size on the flow behavior and hot processing map of near eutectic Al-Si alloys [J]. J. Mater. Res. Technol-JMRT., 2021, 15: 5694
2 Galy C, Le G E, Lacoste E, et al. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences [J]. Addit. Manuf., 2018, 22: 165
3 Hyer H, Zhou L, Mehta A, et al. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion [J]. Acta Mater., 2021, 208: 116698
doi: 10.1016/j.actamat.2021.116698
4 Wang F, Xiong B, Zhang Y, et al. Microstructure, thermo-physical and mechanical properties of spray-deposited Si-30Al alloy for electronic packaging application [J]. Mater. Charact., 2008, 59(10): 1455
doi: 10.1016/j.matchar.2008.01.012
5 Mueller M, Riede M, Eberle S, et al. Microstructural, mechanical, and thermo-physical characterization of hypereutectic AlSi40 fabricated by selective laser melting [J]. J. Laser Appl., 2019, 31(2): 022321
6 Maamoun A H, Elbestawi M, Dosbaeva G K, et al. Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder [J]. Addit. Manuf., 2018, 21: 234
7 McDonald S D, Nogita K, Dahle A K.Eutectic nucleation in Al-Si alloys [J]. Acta Mater., 2004, 52(14): 4273
doi: 10.1016/j.actamat.2004.05.043
8 Tsai Y C, Chou C Y, Lee S L, et al. Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys [J]. J. Alloy. Compd., 2009, 487(1-2): 157
doi: 10.1016/j.jallcom.2009.07.183
9 Rao A G, Rao B R K, Deshmukh V P, et al. Microstructural refinement of a cast hypereutectic Al-30Si alloy by friction stir processing [J]. Mater. Lett., 2009, 63(30): 2628
doi: 10.1016/j.matlet.2009.09.022
10 Farahany S, Ourdjini A, Bakar T A A, et al. On the Refinement Mechanism of Silicon in Al-Si-Cu-Zn Alloy with Addition of Bismuth [J]. Metall. Mater. Sci., 2014, 45(3): 1085
11 Wang F, Liu Z, Qiu D, et al. Revisiting the role of peritectics in grain refinement of Al alloys [J]. Acta Mater., 2013, 61(1): 360
doi: 10.1016/j.actamat.2012.09.075
12 Hegde S, Prabhu K N.Modification of eutectic silicon in Al-Si alloys [J]. J. Mater. Sci., 2008, 43(9): 3009
doi: 10.1007/s10853-008-2505-5
13 Jia Y, Cao F, Scudino S, et al. Microstructure and thermal expansion behavior of spray-deposited Al-50Si [J]. Mater. Des., 2014, 57: 585
doi: 10.1016/j.matdes.2013.12.066
14 Li G M, Liu S Y, Zhan D S, et al. Antibacterial properties and biocompatibility of SLM-fabricated medical titanium [J]. Chin. J. Mater. Res., 2019, 33(02): 117
李改明, 刘思雨, 战德松 等.3D打印医用钛合金的抗菌性能和体外生物相容性 [J]. 材料研究学报, 2019, 33(02): 117
15 Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges [J]. Mater. Des., 2019, 183: 108137
doi: 10.1016/j.matdes.2019.108137
16 Benedetti M, du Plessis A, Ritchie R O, et al. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication [J]. Mater. Sci. Eng., 2021, 144: 100606
doi: 10.1016/j.mser.2021.100606
17 Yang D, Pan C, Zhou Y, et al. Optimized design and additive manufacture of double-sided metal mirror with self-supporting lattice structure [J]. Mater. Des., 2022, 219: 110759
doi: 10.1016/j.matdes.2022.110759
18 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic [J]. Chin. J. Lasers., 2020, 47(5): 32
顾冬冬, 张红梅, 陈洪宇 等.航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47(5): 32
19 Li X P, Kang C W, Huang H, et al. The role of a low-energy-density re-scan in fabricating crack-free Al85Ni5Y6Co2Fe2 bulk metallic glass composites via selective laser melting [J]. Mater. Des., 2014, 63: 407
doi: 10.1016/j.matdes.2014.06.022
20 Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility [J]. Acta Mater., 2015, 95: 74
doi: 10.1016/j.actamat.2015.05.017
21 Wang Y, Wang J J, Zhang H, et al. Effects of heat treatments on microstructure and mechanical properties of AlSi10Mg alloy produced by selective laser melting [J]. Acta. Metall. Sin., 2021, 57(05): 613
王 悦, 王继杰, 张 昊 等.热处理对激光选区熔化AlSi10Mg合金显微组织及力学性能的影响 [J]. 金属学报, 2021, 57(05): 613
22 Dai K, Shaw L.Thermal and stress modeling of multi-material laser processing [J]. Acta. Mater., 2001, 49(20): 4171
doi: 10.1016/S1359-6454(01)00312-3
23 Qi T, Zhu H, Zhang H, et al. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode [J]. Mater. Des., 2017, 135: 257
doi: 10.1016/j.matdes.2017.09.014
24 Sun Y, Chen Z H. Mixed solid-liquid casting of Al-30Si alloy. [J]. Ordnance Mater. Sci. Eng., 2005, 28(2): 27
孙 亦, 陈振华.Al-30Si合金的固液混合铸造 [J]. 兵器材料科学与工程, 2005, 28(2): 27
25 Ren J Y, Chen C Z, He B, et al. Application of SiC and SiC/Al to TMA optical remote sensor [J]. Opt. Precis. Eng., 2008, 16(12): 2537
任建岳, 陈长征, 何 斌 等.SiC和SiC/Al在TMA空间遥感器中的应用 [J]. 光学精密工程, 2008, 16(12): 2537
26 Zhang D, Yi D, Wu X, et al. SiC reinforced AlSi10Mg composites fabricated by selective laser melting [J]. J. Alloy. Compd., 2022, 894: 162356
27 Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Mater. Sci. Eng., 2013, 590, 153
doi: 10.1016/j.msea.2013.10.023
28 Scudino S, Liu G, Sakaliyska M, et al. Powder metallurgy of Al-based metal matrix composites reinforced with β-Al3Mg2 intermetallic particles: Analysis and modeling of mechanical properties [J]. Acta Mater., 2009, 57, 4529
doi: 10.1016/j.actamat.2009.06.017
29 Ma P, Prashanth K G, Scudino S, et al. Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting [J] Acta Mater., 2014, 4(1), 28
30 Xiong X C. The study on high thermal conductivity and low expansion high silicon aluminum alloy [D]. Wuhan: Huazhong University of Science & Technology, 2017
熊歆晨.高导热低膨胀高硅铝合金的研究 [D]. 华中科技大学, 2017
31 Tan S, Wang Y, Liu W, et al. Anisotropy reduction of additively manufactured AlSi10Mg for metal mirrors [J]. J. Mater. Sci., 2022, 57(25): 11934
doi: 10.1007/s10853-022-07080-4
[1] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[2] LV Tao, LIU Fang, LIU Chang, DONG Dexiu, ZHANG Weihong, CAI Guixi. Influence of Microstructure on Ultrasonic Attenuation of Forged GH907 Alloy Ring for Aero Engine Turbine Casing[J]. 材料研究学报, 2024, 38(1): 14-22.
[3] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[4] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[5] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[6] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[7] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[8] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[9] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[10] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[11] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[12] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[13] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[14] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[15] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
No Suggested Reading articles found!