Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 130-140    DOI: 10.11901/1005.3093.2023.169
ARTICLES Current Issue | Archive | Adv Search |
Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process
LIU Zhenhuan1,2, LI Yonghan1,2, LIU Yang1(), WANG Pei1, LI Dianzhong1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process. Chinese Journal of Materials Research, 2024, 38(2): 130-140.

Download:  HTML  PDF(23309KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution behavior of carbides in GCr15 bearing steel and its influence on the impact toughness during long-term aging at 170oC have been investigated by means of SEM, TEM, and XRD, aiming to meet the requirements of vacuum dry pump bearings. The results demonstrate that after quenching at 840oC and the tempering at 230oC, the hardness of GCr15 steel remains above 59 HRC with minimal retained austenite, which is favorable to the enhancement of performance and dimensional stability for the steel at 170oC. During the aging process, carbon atom partitioning and carbide precipitation lead to a decrease in carbon concentration, lattice distortion and micro-zone stress strain of the matrix, while transitional carbides precipitate, coarsen and then transform into non-coherent cementite. The resultant effect of these microstructural variation is a reduction in material hardness, while the impact toughness initially increasing and then decreasing. However, the cooperative effect of the decarbonization of martensite and carbide type transformation makes hardness of steels remain stable or even increase a little in between 1000 h and 2000 h during the aging process. To improve the microstructure and performance stability during the aging process, cryogenic treatment was conducted after quenching. The introduction of high-density defects promotes effective carbon distribution during tempering and aging, which gives rise to uniform distribution and size control of fine carbides. Cryogenic treatment reduces the carbide growth rate from 298 nm3/h to 229.5 nm3/h, which delays the performance decline effectively and makes the GCr15 bearing steel satisfied with demands of vacuum dry pump bearings.

Key words:  metallic materials      GCr15      aging treatment      Impact toughness      cryogenic treatment      carbide evolution     
Received:  09 March 2023     
ZTFLH:  TG161  
Fund: Science and Technology Service Network Initiative(KFJ-STS-QYZD-2021-20-002)
Corresponding Authors:  LIU Yang, Tel: (024)83971973, E-mail: yangliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.169     OR     https://www.cjmr.org/EN/Y2024/V38/I2/130

CCrMnSiAlSTiCaHNOFe
1.021.580.440.260.0160.00130.00130.00030.00010.0010.0003Bal.
Table 1  Chemical compositions of experimental GCr15 steel (mass fraction, %)
SampleQuenchingCryogenic treatmentTempering
#0740oC × 30 min + 840oC × 30 min + oil quenching-160oC × 120 min
#1740oC × 30 min + 840oC × 30 min + oil quenching-80oC × 120 min230oC × 120 min
#2740oC × 30 min + 840oC × 30 min + oil quenching-230oC × 120 min
Table 2  The Q-(C)-T heat treatment procedure
Diffraction crystal planes of martensiteAustenite diffraction crystallineG
(200)M(200) γ2.46
(220) γ1.32
(311) γ1.78
(211)M(200) γ1.21
(220) γ0.65
(311) γ0.87
Table 3  Ratio of diffraction intensity factors of distinct crystal planes
Fig.1  Microstructures of samples with different heat treatment processes (a, d) process 0, (b, e) process 1, (c, f) process 2
HardnessImpact toughnessRetained austenite
#061.0 HRC101 J11%
#159.9 HRC187 J< 1%
#259.2 HRC210 J< 1%
Table 4  Hardness, impact toughness, and retained austenite content of various heat treatment processes
Fig.2  TEM bright-field microstructure pictures of samples aged at various periods (a) #1-0, (b) #1-2000, (c) #1-5000, (d) #2-0, (e) #2-2000, (f) #2-5000
Fig.3  XRD spectra of process 1 and 2 samples aged at various periods (a) process 1, (b) process 2
Fig.4  Carbon content of martensite in samples treated with process 1 and 2 over the aging process
Aging time / h010002000300040005000
Process 1 / 1016 m-21.982.031.691.771.571.50
Process 2 / 1016 m-21.901.651.051.351.111.21
Table 5  Dislocation density of samples with different aging time
Fig.5  Impact toughness and hardness changes during aging of different process samples
Fig.6  TEM bright field figures and SEAD spectra of carbide morphology of process 1 samples (a, c) before aging, (b, d) after aging for 2000 h
Fig.7  Morphology of secondary cracks in samples for different aging time (a, b) before aging, (c, d) aging for 3000 h
Fig.8  SEM figures of impact crack origin of sample after long-term aging
Fig.9  TEM images of the microstructure morphology of samples after different treatments (a) process 1 (after cryogenic treatment), (b) Process 2 (without cryogenic treatment)
Fig.10  Microstructure morphology of samples after heat treatment process 1 and 2 (a, c) process 1 (after cryogenic treatment), (b, d) process 2 (without cryogenic treatment)
Aging time / h010002000300040005000
Process 1126.8131.5136.0138.5144.1147.9
Process 2129.8135140.3145.5151.3153.6
Table 6  Average carbide size of the samples after aging for different time (nm)
Fig.11  Schematic of cryogenic treatment on carbide distribution and size (a, b) after cryogenic treatment, (c, d) without cryogenic treatment
Fig.12  Variation of average length of needle-like carbides during aging at 170oC
1 Vetters H, Dong J, Bomas H, et al. Microstructure and fatigue stre-ngth of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic-martensitic heat treatment [J]. Int. J. Mater. Res., 2006, 97(10): 1432
doi: 10.3139/146.101388
2 Zhang J W, Shiozawa K, Lu L T, et al. Fatigue fracture behavior of bearing steel GCr15 in very high cycle regime [C]. Advanced Materials Research. Trans Tech Publications Ltd, 2008, 44: 119
3 Senda K. The effects of heat treatment on the bending strength of high carbon chromium steel [J]. Materials Transactions, JIM, 1962, 3(3): 173
4 Heidenreich R D, Sturkey L, Woods H L. Investigation of secondary phases in alloys by electron diffraction and the electron microscope [J]. J. Appl. Phys., 1946, 17(2): 127
5 Jack K H, Wild S. Nature of χ-carbide and its possible occurrence in steels [J]. Nature, 1966, 212: 248
6 Perez M, Sidoroff C, Vincent A, et al. Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes [J]. Acta Mater., 2009, 57(11): 3170
doi: 10.1016/j.actamat.2009.03.024
7 Jung M, Lee S J, Lee Y K. Microstructural and dilatational changes during tempering and tempering kinetics in martensitic medium-carbon steel [J]. Metall. Mater. Trans. A, 2009, 40: 551
doi: 10.1007/s11661-008-9756-2
8 Nagakura S, Hirotsu Y, Kusunoki M, et al. Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction [J]. Metall. Trans. A, 1983, 14: 1025
doi: 10.1007/BF02659851
9 Speich G R, Leslie W C. Tempering of steel [J]. Mater. Trans., 1972, 3: 1043
10 Caballero F G, García-Mateo C, de Andrés C G. Dilatometric study of reaustenitisation of high silicon bainitic steels: Decomposition of retained austenite [J]. Mater. Trans., 2005, 46(3): 581
doi: 10.2320/matertrans.46.581
11 Beswick J M. Fracture and fatigue crack propagation properties of hardened 52100 steel [J]. Metall. Trans. A, 1989, 20: 1961
doi: 10.1007/BF02650283
12 Li S, Xiao M, Ye G, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging [J]. Mater. Sci. Eng. A, 2018, 732: 167
doi: 10.1016/j.msea.2018.07.012
13 Barrow A T W, Kang J H, Rivera-Díaz-del-Castillo P E J. The ϵηθ transition in 100Cr6 and its effect on mechanical properties [J]. Acta Mater., 2012, 60(6-7): 2805
doi: 10.1016/j.actamat.2012.01.046
14 Wu Y, Qin X, Wang C, et al. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60: 61
doi: 10.1016/j.jmst.2020.06.005
15 Lee H M, Allen S M, Grujicic M. Coarsening resistance of M2C carbides in secondary hardening steels: Part I. Theoretical model for multicomponent coarsening kinetics [J]. Metall. Trans. A, 1991, 22: 2863
doi: 10.1007/BF02650247
16 Hu Z F, Wu X F, Wang C X. Coarsening kinetics of multi-component M2C precipitates in secondary hardening alloy steels [J]. Acta. Metall. Sin., 2003, 39(6): 585
胡正飞, 吴杏芳, 王春旭. 二次硬化合金钢中多组元强化相 M2C碳化物的粗化动力学研究 [J]. 金属学报, 2003, 39(6): 585
17 Xiao L, Fan Z, Jinxiu Z, et al. Lattice-parameter variation with carbon content of martensite. I. X-ray-diffraction experimental study [J]. Phys. Rev. B, 1995, 52(14): 9970
pmid: 9980042
18 Hirotsu Y, Nagakura S. Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering [J]. Acta Mater., 1972, 20(4): 645
doi: 10.1016/0001-6160(72)90020-X
19 Thompson S W. Structural characteristics of transition-iron-carbide precipitates formed during the first stage of tempering in 4340 steel [J]. Mater. Charact., 2015, 106: 452
doi: 10.1016/j.matchar.2015.05.030
20 Williamson D L, Nakazawa K, Krauss G. A study of the early stages of tempering in an Fe-1.2 Pct alloy [J]. Metall. Trans. A, 1979, 10: 1351
doi: 10.1007/BF02811991
21 Gladman T. Precipitation hardening in metals [J]. Mater. Sci. Technol., 1999, 15(1): 30
doi: 10.1179/026708399773002782
22 Calliari I, Breda M, Ramous E, et al. Impact toughness of an isothermally treated Zeron® 100 SDSS [J]. J. Mater. Eng. Perform., 2012, 21: 2117
doi: 10.1007/s11665-012-0138-y
23 Deng X T, Fu T L, Wang Z D, et al. Epsilon carbide precipitation and wear behaviour of low alloy wear resistant steels [J]. Mater. Sci. Technol., 2016, 32(4): 320
doi: 10.1080/02670836.2015.1137410
24 Jiang B, Wu M, Zhang M, et al. Microstructural characterization, strengthening and toughening mechanisms of a quenched and tempered steel: Effect of heat treatment parameters [J]. Mater. Sci. Eng. A, 2017, 707: 306
doi: 10.1016/j.msea.2017.09.062
25 Zheng Y, Wang F, Li C, et al. Microstructural evolution, coarsening behavior of precipitates and mechanical properties of boron bearing steel 25CrMoNbB during tempering [J]. Mater. Sci. Eng. A, 2018, 712: 453
doi: 10.1016/j.msea.2017.11.115
26 Li H F, Duan Q Q, Zhang P, et al. The Relationship between Strength and Toughness in Tempered Steel: Trade‐Off or Invariable? [J]. Adv. Eng. Mater., 2019, 21(4): 1801116
doi: 10.1002/adem.v21.4
27 Samuel F H, Hussein A A. Tempering of medium-and high-carbon martensites [J]. Mater. Charact., 1982, 15(4): 391
28 Taylor K A, Olson G B, Cohen M, et al. Carbide precipitation during stage I tempering of Fe-Ni-C martensites [J]. Metall. Trans. A, 1989, 20: 2749
doi: 10.1007/BF02670168
29 Hou Z, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel [J]. J. Mater. Sci., 2019, 54(12): 9222
doi: 10.1007/s10853-019-03530-8
30 Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19(1-2): 35
doi: 10.1016/0022-3697(61)90054-3
31 Tiley J, Viswanathan G B, Srinivasan R, et al. Coarsening kinetics of γ′ precipitates in the commercial nickel base Superalloy René 88 DT [J]. Acta Mater., 2009, 57(8): 2538
doi: 10.1016/j.actamat.2009.02.010
32 Moshtaghin R S, Asgari S. Growth kinetics of γ′ precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
[1] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[4] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
No Suggested Reading articles found!