|
|
Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel |
HAO Wenjun1, JING Hemin1( ), XI Tong2( ), YANG Chunguang2, YANG Ke2 |
1.School of Materials Science and Engineering. Anhui University of Technology, Ma Anshan 243000, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research. Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel. Chinese Journal of Materials Research, 2024, 38(2): 121-129.
|
Abstract The effect of copper (Cu) addition on the microstructure, mechanical properties and corrosion resistance of high carbon Cu-bearing martensitic stainless steels, being subjected to austenitizing treatment at different temperatures was investigated by means of optical microscopy (OM), scanning electron microscope, (SEM), X-Ray diffraction (XRD), electron back scattered diffraction (EBSD) and transmission electron microscope (TEM). The results show that the fraction of carbides decreases and the content of retained austenite increases gradually with the increase of austenitizing temperature. The addition of Cu has a positive effect on the amount of precipitation for small size carbides, which distributed in the matrix, and increases the retained austenite significantly. The hardness of high carbon Cu-bearing martensitic stainless steel decreases slightly after Cu addition, because the softening effect of retained austenite is greater than the strengthening effect of martensite. Meanwhile, the impact absorption energy increase from 1.5 J to 9.1 J, indicating that the toughness of the steel was enhanced significantly. Besides, the free-corrosion potential of the Cu-bearing stainless steels decreases due to the increase of retained austenite volume fraction.
|
Received: 20 March 2023
|
|
Fund: National Natural Science Foundation(52101293) |
Corresponding Authors:
XI Tong, Tel: (024)23971899, E-mail: txi@imr.ac.cn; JING Hemin, Tel: (0555)2311570, E-mail: jinghemin@.ahut.edu.cn
|
1 |
Shen M D, Xiao C H, Jian Z, et al. Microstructure and mechanical properties of martensitic stainless steel 6CrlSMoV [J]. J. Iron Steel Res, 2012, 19(3): 56
doi: 10.1016/S1006-706X(12)60074-0
|
2 |
Cheng Y, Ding H, Zhu S G. Study on Strengthening Methods for cutting edge of 3Cr13 Stainless steel [J]. Hot Work. Technol., 2018, 47(4): 80
|
|
成 瑜, 丁 浩, 朱世根. 3Cr13不锈钢刃口的强化方法研究 [J]. 热加工工艺, 2018, 47(4): 80
|
3 |
Lian, Yong et al. Effect of tempering treatment on atmospheric corrosion behavior of 3Cr13 martensitic stainless steel in marine environment [J]. J. Mater. Eng. Perform., 2022, 31(6): 4963
doi: 10.1007/s11665-022-06597-8
|
4 |
Barlow L D. The effect of austenitising and tempering parameters on the microstructure and hardness of martensitic stainless steel AISI 420 [D]. University of Pretoria, 2010
|
5 |
Zhang E H, Zhang H L. Martensitic stainless steel development status and trends [J]. Coal Mine Machinery, 2014, 35(12): 16
|
|
张二红, 张华龙. 马氏体不锈钢发展现状与趋势 [J]. 煤矿机械, 2014, 35(12): 16
|
6 |
Zhu Q, Li J, Shi C, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 4313
doi: 10.1007/s11665-015-1723-7
|
7 |
Yao D. Evolution of the microstructure of high carbon martensitic stainless ateel used as a cutlery material during manufacturing process [D]. Beijing: University of Science and Technology Beijing. 2016
|
|
姚 迪. 刀剪用高碳马氏体不锈钢生产过程组织演变行为研究[D]. 北京: 北京科技大学, 2016
|
8 |
O'Brien J M, Hosford W F. Spheroidization cycles for medium carbon steels [J]. Metall. Mater. Trans. A., 2002, 33: 1255
|
9 |
Song H D, Li J, Shi C B, et al. Evolution of inclusions in 8Cr13MoV steel during ESR process [J]. Iron, 2016, 51(8): 41
|
|
宋惠东, 李 晶, 史成斌 等. 8Cr13MoV钢电渣重熔过程中夹杂物行为 [J]. 钢铁, 2016, 51(8): 41
|
10 |
Li H J, Wang B Q, Song X Y, et al. New spheroidizing technique of ultra-high carbon steel with aluminum addition [J]. J. Iron. Steel. Res., International: 2006, 13(3): 9
|
11 |
Li Y B, Wang F M, Li C R. Effect of Cerium on Grain in low chromium ferritic steinless steel [J]. Zhonggua Xitu Xuabao, 2009, 27(1): 123
|
|
李亚波, 王福明, 李长荣. 铈对低铬铁素体不锈钢晶粒和碳化物的影响 [J]. 中国稀土学报, 2009, 27(1): 123
|
12 |
Čatipović N, Živković D, Dadić Z, et al. Effect of copper and heat treatment on microstructure of austempered ductile iron [J]. Trans. Indian. Inst. Met., 2021, 74: 1455
doi: 10.1007/s12666-021-02225-6
|
13 |
Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2022, 35(12): 933
|
|
郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2022, 35(12): 933
|
14 |
Hao X, Xi T, Xu Z, et al. Effect of tempering temperature on the microstructure, corrosion resistance, and antibacterial properties of Cu-bearing martensitic stainless steel [J]. Materials and Corrosion, 2021, 72(10): 1668
|
15 |
Kim M, Lee K. Effect of heat treatment on microstructure, mechanical property and corrosion behavior of STS 440C martensitic stainless steel [J]. Korean J. Mater. Res., 2021, 31(1): 29
doi: 10.3740/MRSK.2021.31.1.29
|
16 |
Dong Z Y, Wang R, Kang Y, et al. Effect of high temperature homogenization on carbide morphology and mechanical properties of 1.3C-5Cr-0.7Mo-0.5V steel [J]. Heat Treat. Met., 2020, 45(12): 69
|
|
董子尧, 王 睿, 康 燕 等. 高温均匀化处理对1.3C-5Cr-0.7Mo-0.6V钢中碳化物形貌及力学性能的影响 [J]. 金属热处理, 2020, 45(12): 69
|
17 |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
doi: 10.2320/matertrans.46.2817
|
18 |
Yao Mi. Effect of Cu、Si、on the content of retained austenite of austempered ductile iron [J]. Sceipta. Metall. Mater., 1995, 32(9): 1313
|
19 |
Luo L J, Hu K H. Effects of retained austenite on impact and wear property of ZG30CrMnSiMoNi steel [J]. Hor Work Technol., 2023, 52(12): 61
|
|
罗灵杰, 胡开华. 残余奥氏体对ZG30CrMnSiMoNi钢冲击和磨损性能的影响 [J]. 热加工工艺, 2023, 52(12): 61
|
20 |
Yang Y D. Research on microstructure evolution of cutlery used high carbon martensitic stainless steel [D]. Shanghai: Shanghai University, 2020
|
|
杨玉丹. 刀具用高碳马氏体不锈钢的组织演变研究 [D]. 上海: 上海大学, 2020
|
21 |
Bonagani, Sunil, Kumar, et al. Influence of tempering treatment on microstructure and pitting corrosion of 13wt.%Cr martensitic stainless steel [J]. Corros. Sci., 2018, (131): 340
|
22 |
Li H D, Zhang T Y, Liu W, et al. Effect of deep cryogenic treatment on microstructure and corrosion resistance of 440C martensitic stainless steel [J]. Heat Treat. Met. 2022(008)047: 152
|
|
李慧东, 张覃轶, 刘 伟 等. 深冷处理对440C马氏体不锈钢组织和耐蚀性的影响 [J]. 金属热处理, 2022(008)047: 152
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|