Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 105-110    DOI: 10.11901/1005.3093.2023.227
ARTICLES Current Issue | Archive | Adv Search |
Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase
YU Sheng1, GUO Wei1,2,3(), LV Shulin1, WU Shusen1
1.State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
3.State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase. Chinese Journal of Materials Research, 2024, 38(2): 105-110.

Download:  HTML  PDF(8637KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti-based amorphous alloys possess excellent properties such as low density, good biocompatibility and high corrosion resistance, which makes them one kind of promising materials used as biomedical materials. However, the room-temperature brittleness of Ti-based amorphous alloys limits their application. In order to improve the room-temperature plasticity of Ti-based amorphous alloys, the present study, a small amount of Mo (a β-Ti stabilizing element) is added to the Ti40Zr10Cu36Pd14 amorphous alloy so that the plastic β-Ti phase particles may be precipitated in-situ within the alloy during the solidification process. It is expected that in the subsequent deformation process, the plastic β-Ti phase can effectively impede the rapid propagation of the main shear band in the matrix, causing deflects, branching or multiplication of it. The multiple shear bands significantly improved the room-temperature mechanical properties. Finally, the optimal room-temperature mechanical properties were obtained for the amorphous alloy (Ti0.4Zr0.1Cu0.36Pd0.14)95Mo5 which showed the fracture strength of 2630 MPa and plastic strain of 7.3%, namely 32.0% and 508% higher than that of the base alloy, respectively.

Key words:  metallic materials      amorphous alloy matrix composites      room-temperature plasticity      shear band     
Received:  18 April 2023     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52101138);Shenzhen Science and Technology Program(JCYJ20220530160813032);State Key Lab of Advanced Metals and Materials(2020-Z01);State Key Laboratory for Mechanical Behavior of Materials(20202205);Guangdong Basic and Applied Basic Research Foundation(2020A1515110531)
Corresponding Authors:  GUO Weil, Tel: 18627710273, E-mail: weiguo@hust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.227     OR     https://www.cjmr.org/EN/Y2024/V38/I2/105

Fig.1  XRD patterns of Ti-based amorphous composites
Fig.2  SEM images of samples at different Mo contents (a) Mo0; (b) Mo1; (c) Mo2 and (d) distribution of Mo element in (c) -plot
Fig.3  SEM images of Mo5 specimens (a) and corresponding elemental face sweeps of Ti (b), Zr (c), Cu (d), Pd (e) and Mo (f)
Fig.4  Room temperature compression true stress-strain curves for specimens with different Mo contents
SampleE / GPaσf / MPaσy / MPaεf / %εp / %n
Mo0122199218502.71.2-
Mo1128205719123.21.7-
Mo2113242218185.53.90.14
Mo5105263017729.07.30.20
Table 1  Young′s modulus E, fracture strength σf, yield strength σy, fracture strain εf, yield strain εp and work hardening index n of Ti-based amorphous composites with different Mo contents
Fig.5  Compression fractures of the samples with different Mo contents and their lateral SEM images (a, b) Mo0; (c, d) Mo5
1 Zhai W, Chang J, Geng D L, et al. Progress and prospect of solidification research for metallic materials [J]. Chin. J. Nonferrous Met., 2019, 29(9): 1953
翟 薇, 常 健, 耿德路 等. 金属材料凝固过程研究现状与未来展望 [J]. 中国有色金属学报, 2019, 29(9): 1953
2 Qiu K Q, Yang J B, You J H, et al. Glass-forming ability and mechanical properties for Mg-Zn-Ca alloys [J]. Chin. J. Nonferrous Met., 2011, 21(8): 1828
邱克强, 杨君宝, 尤俊华 等. Mg-Zn-Ca合金的非晶形成能力及力学性能 [J]. 中国有色金属学报, 2011, 21(8): 1828
3 Li B Y, Rong L J, Li Y Y. Stress-strain behavior of porous Ni-Ti shape memory intermetallics synthesized from powder sintering [J]. Intermetallics, 2000, 8(5-6): 643
doi: 10.1016/S0966-9795(99)00140-5
4 Xie G Q, Kanetaka H, Kato H, et al. Porous Ti-based bulk metallic glass with excellent mechanical properties and good biocompatibility [J]. Intermetallics, 2019, 105: 153
doi: 10.1016/j.intermet.2018.12.002
5 He G, Eckert J, Löser W. Stability, phase transformation and deformation behavior of Ti-base metallic glass and composites [J]. Acta Mater., 2003, 51(6): 1621
doi: 10.1016/S1359-6454(02)00563-3
6 Sugiyama N, Xu H Y, Onoki T, et al. Bioactive titanate nanomesh layer on the Ti-based bulk metallic glass by hydrothermal-electrochemical technique [J]. Acta Biomater., 2009, 5(4): 1367
doi: 10.1016/j.actbio.2008.10.014 pmid: 19022712
7 Li J, Li Z C, Chen D J. Biocompatibility of new titanium alloy TZNT for surgical implant application [J]. Chin. J. Nonferrous Met., 2010, 20(4): 756
李 军, 李佐臣, 陈杜娟. 新型外科植入用钛合金TZNT的生物相容性 [J]. 中国有色金属学报, 2010, 20(4): 756
8 Zhu S L, Wang X M, Qin F X, et al. New TiZrCuPd quaternary bulk glassy alloys with potential of biomedical applications [J]. Mater. Trans., 2007, 48(9): 2445
doi: 10.2320/matertrans.MRA2007086
9 Xu F, Long Z L, Peng J, et al. Atomic force microscope nanoindentation behavior of shear bands of bulk metallic glasses [J]. Chin. J. Nonferrous Met., 2011, 21(6): 1444
许 福, 龙志林, 彭 建 等. 块体非晶合金剪切带的原子力纳米压痕行为 [J]. 中国有色金属学报, 2011, 21(6): 1444
10 Gu X J, Poon S J, Shiflet G J, et al. Compressive plasticity and toughness of a Ti-based bulk metallic glass [J]. Acta Mater., 2010, 58(5): 1708
doi: 10.1016/j.actamat.2009.11.013
11 Wada T, Setyawan A D, Yubuta K, et al. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt [J]. Scr. Mater., 2011, 65(6): 532
doi: 10.1016/j.scriptamat.2011.06.019
12 Kolodziejska J A, Kozachkov H, Kranjc K, et al. Towards an understanding of tensile deformation in Ti-based bulk metallic glass matrix composites with BCC dendrites [J]. Sci. Rep., 2016, 6(1): 22563
doi: 10.1038/srep22563
13 Zhai H M, Wang H F, Liu F. Effects of Sn addition on mechanical properties of Ti-based bulk metallic glass composites [J]. Mater. Des., 2016, 110: 782
doi: 10.1016/j.matdes.2016.08.051
14 Zhang L, Zhang H F, Li W Q, et al. β-type Ti-based bulk metallic glass composites with tailored structural metastability [J]. J. Alloys Compd., 2017, 708: 972
doi: 10.1016/j.jallcom.2017.03.074
15 Zhao J X. Understanding the shear band interaction in metallic glass [J]. Philos. Mag. Lett., 2016, 96(1): 35
doi: 10.1080/09500839.2015.1134834
16 Qiao J W, Zhang Y, Liaw P K, et al. Micromechanisms of plastic deformation of a dendrite/Zr-based bulk-metallic-glass composite [J]. Scr. Mater., 2009, 61(11): 1087
doi: 10.1016/j.scriptamat.2009.08.044
17 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48(1): 279
doi: 10.1016/S1359-6454(99)00300-6
18 Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
doi: 10.1016/j.pmatsci.2015.05.002
19 Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94(12): 125510
doi: 10.1103/PhysRevLett.94.125510
20 Wang Z, Georgarakis K, Nakayama K S, et al. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites [J]. Sci. Rep., 2016, 6(1): 24384
doi: 10.1038/srep24384
[1] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[4] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[5] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[6] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
No Suggested Reading articles found!