Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 111-120    DOI: 10.11901/1005.3093.2023.178
ARTICLES Current Issue | Archive | Adv Search |
Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33
ZHENG Mingrui1,2, LI Yawei1,2, LIU Jing1,2, WANG Li1(), ZHENG Wei1, DONG Jiasheng1(), ZHANG Jian1, LOU Langhong1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHENG Mingrui, LI Yawei, LIU Jing, WANG Li, ZHENG Wei, DONG Jiasheng, ZHANG Jian, LOU Langhong. Effect of Notch Orientation and Temperature on Thermal Fatigue Behavior of a Third-Generation Single Crystal Superalloy DD33. Chinese Journal of Materials Research, 2024, 38(2): 111-120.

Download:  HTML  PDF(35089KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The crack initiation and propagation behavior of a third-generation single crystal superalloy DD33 with V-notches of different orientations ([100], [210] and [110]) during thermal fatigue tests: samples were hold at different high-temperatures (1000oC, 1100oC and 1200oC respectively) for 60 s and then quick quenching into water as one cycle, was investigated by OM, SEM and EDS. The results show that the thermal fatigue properties of DD33 show obvious anisotropy tested at different high-temperatures. The initiation and propagation behavior of thermal fatigue cracks in samples with different notch orientations show the dependence of crystallographic orientation. At 1000oC/1100oC/1200oC, the [100] orientated specimens exhibit the best thermal fatigue performance. The thermal fatigue performance of the [210] oriented sample is the worst at 1100oC, while the thermal fatigue performance of the [110] oriented sample is the worst at 1000oC and 1200oC. The thermal stress, oxidation, and the operation of slip systems result in the difference in crack growth rate of samples with different notch orientations.

Key words:  metallic materials      single crystal superalloy      notch orientation      thermal fatigue      anisotropy      oxidation     
Received:  15 March 2023     
ZTFLH:  TG132.32  
Fund: Science Center for Gas Turbine Project(P2021-AB-IV-001-002);National Science and Technology Major Project(2017-VI-0019-0091)
Corresponding Authors:  WANG Li, Tel: (024)23971276, E-mail: wangli@imr.ac.cn;
DONG Jiasheng, Tel: (024)23748882, E-mail: djs@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.178     OR     https://www.cjmr.org/EN/Y2024/V38/I2/111

ElementsCoCrWTaMoAlReNi
Contents93.5681.564Bal.
Table 1  Nominal composition of experimental alloy (mass fraction,%)
Fig.1  Schematic of thermal fatigue samples with different orientations. (a) [100]; (b) [210]; (c) [110]
Fig.2  Geometry and dimensions of specimens for thermal fatigue tests
Fig.3  Notch morphology, surface macroscopic morphology and microstructure morphology of samples with different orientations. (a, b, c) [100]; (d, e, f) [210]; (g, h, i) [110]
Fig.4  Dynamic curves of crack propagation for samples with different orientations (a) 1000oC; (b) 1100oC; (c) 1200oC
Fig.5  Cycles required for thermal fatigue crack initiation of samples with different orientations
Fig.6  Thermal fatigue crack initiation of samples with different orientations after 120 cycles at 1000oC. (a, b) [100]; (c, d) [210]; (e, f) [110]
Fig.7  Element distribution around crack tips of samples with [100] orientation at 1000oC
Fig.8  Element distribution around crack tips of samples with [210] orientation at 1000oC
Fig.9  Element distribution around crack tips of samples with [110] orientation at 1000oC
Fig.10  SEM morphologies of the crack tip regions and overall cracks at 1100oC after 210 cycles. (a, b, c) [100]; (d, e, f) [210]; (g, h, i) [110]
Fig.11  SEM morphologies of the crack tip regions and overall cracks at 1200oC after 120 cycles (a, b, c) [100]; (d, e, f) [210]; (g, h, i) [110]
1 Reed R C. The Superalloys Fundamentals and Application [M]. New York: Cambridge University Press, 2006
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(09): 1077
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(09): 1077
3 Halford G R. Low-cycle thermal fatigue [J]. Therm. Fatigue, 1986, 22(2): 285
4 Zhang J, Zhao Z, Kong Y, et al. Crack initiation and propagation mechanisms during thermal fatigue in directionally solidified superalloy DZ125 [J]. Int. J. Fatigue, 2019, 119: 355
doi: 10.1016/j.ijfatigue.2018.09.001
5 Xia P C, Yu J J, Sun X F, et al. Influence of holding time and notched radius on thermal fatigue property of DZ951 alloy [J]. Trans. Mater. Heat Treat., 2010, 33(02): 40
夏鹏成, 于金江, 孙晓峰 等. 保温时间和缺口半径对DZ951合金热疲劳性能的影响 [J]. 材料热处理学报, 2010, 31(02): 40
6 Xiao X, Xu H, Qin X Z, et al. Microstructural evolution of two cast nickel-base superalloys in thermal fatigue process [J]. J. Iron Steel Res., 2011, 23(S2): 393
doi: 10.1016/S1006-706X(16)30062-0
肖 旋, 许 辉, 秦学智 等. 两种铸造高温合金热疲劳过程中微观组织演化 [J]. 钢铁研究学报, 2011, 23(S2): 393
7 Ning K L, Zheng Z, An F Q, et al. Thermal fatigue behavior of K125L superalloy [J]. Rare Met., 2016, 35(02): 172
doi: 10.1007/s12598-014-0254-y
8 Zhou T J, Ding H S, Ma X P, et al. A comparison study of the thermal fatigue properties of three ni-based cast superalloys cycled from 20 to 1100oC [J]. Adv. Eng. Mater., 2019, 21(7): 190054
9 Gui W M, Zhang H Y, Yang M, et al. The intrinsic relationship between microstructure evolution and thermal fatigue behavior of a single-crystal cobalt-base superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(12): 1192
doi: 10.1007/s40195-017-0646-8
10 Chen J, Shi D Q, Miao G L, et al. Thermal fatigue behavior of nickel based superalloy GH536 [J]. J. Aero. Power, 2017, 32(6): 1381
陈 静, 石多奇, 苗国磊 等. 镍基高温合金GH536的热疲劳行为 [J]. 航空动力学报, 2017, 32(6): 1381
11 Zhou Z, Yu D, Wang L, et al. Effect of skew angle of holes on the thermal fatigue behavior of a Ni-based single crystal superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(2): 185
doi: 10.1007/s40195-016-0514-y
12 Wang L, Zhou Z J, Jiang W G, et al. Effect of secondary orientation on thermal fatigue behavior of a nickel-base single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2014, 28(09): 663
王 莉, 周忠娇, 姜卫国 等. 第二取向对镍基单晶高温合金DD33热疲劳性能的影响 [J]. 材料研究学报, 2014, 28(09): 663
13 Lv J J, Wang A D, Chen C F, et al. Thermal fatigue behavior of a nickel-base single crystal superalloy DD5 with secondary orientation [J]. Mater. Res. Express, 2018, 5(10): 106516
doi: 10.1088/2053-1591/aadac7
14 Xiao X, Xu H, Qin X Z, et al. Thermal fatigue behavior of three cast nickel base superalloys [J]. Acta Metall. Sin., 2011, 47(09): 1129
肖 旋, 许 辉, 秦学智 等. 3种铸造镍基高温合金热疲劳行为研究 [J]. 金属学报, 2011, 47(09): 1129
15 Xia P C, Yang L, Yu J J, et al. Influence of direction of notch on thermal fatigue property of a directionally solidified nickel base superalloy [J]. Rare Met., 2011, 30: 472
doi: 10.1007/s12598-011-0327-0
16 Zhang Z H, Yu J J, Shi F, et al. Influence of thin wall on the tensile properties of DD499 single crystal superalloy [J]. Foundry, 2014, 63(08): 781
张泽海, 于金江, 石 峰 等. DD499单晶合金拉伸性能薄壁效应 [J]. 铸造, 2014, 63(08): 781
17 Hu Y, Zhang L, Cao T, et al. The effect of thickness on the creep properties of a single-crystal nickel-based superalloy [J]. Mater. Sci. Eng. A, 2018, 728: 124
doi: 10.1016/j.msea.2018.04.114
18 Li Q, Xie J, Yu J, et al. Effect of casting thickness on microstructure and mechanical properties of the high-W superalloy K416B [J]. Mater. Today Commun., 2021, 29: 102916
19 Zhao J Q, Shi Z X. Wall-thinned effects on tensile property in single crystal superalloys and influence of anisotropy [J]. Vacuum, 2018, 55(03): 41
赵金乾, 史振学. 单晶高温合金拉伸性能薄壁效应及各向异性的影响 [J]. 真空, 2018, 55(03): 41
20 Hu G X. Fundamentals of Materials Science (3rd Edition) [M]. Shanghai: Shanghai Jiao Tong University Press, 2017
胡庚祥. 材料科学基础(第三版) [M]. 上海: 上海交通大学出版社, 2017
21 Siebörger D, Knake H, Glatzel U. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases [J]. Mater. Sci. Eng. A, 2001, 298(1): 26
doi: 10.1016/S0921-5093(00)01318-6
22 Liu J L, Ye L H, Zhou Y Z, et al. Anisotropy of elasticity of a Ni base single crystal superalloy [J]. Acta Metall. Sin., 2020, 56(06):855
刘金来, 叶荔华, 周亦胄 等. 一种单晶高温合金的弹性性能的各向异性 [J]. 金属学报, 2020, 56(06): 855
23 Suresh S. Fatigue of materials [M]. 3nd Ed., New York: Cambridge University Press, 1998
24 Wu C H, Jiang R, Zhang L C, et al. Oxidation accelerated dwell fatigue crack growth mechanisms of a coarse grained PM Ni-based superalloy at elevated temperatures [J]. Corros. Sci., 2022, 209: 110702
doi: 10.1016/j.corsci.2022.110702
25 Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003
李铁藩. 金属高温氧化及热腐蚀 [M]. 北京: 化学工业出版社, 2003
26 Qiu W, He Z, Fan Y, et al. Effects of secondary orientation on crack closure behavior of nickel-based single crystal superalloys [J]. Int. J. Fatigue, 2016, 83: 335
doi: 10.1016/j.ijfatigue.2015.11.004
27 Zhao Z, Li Q, Zhang F, et al. Transition from internal to surface crack initiation of a single-crystal superalloy in the very-high-cycle fatigue regime at 1100oC [J]. Int. J. Fatigue, 2021, 150: 106343
doi: 10.1016/j.ijfatigue.2021.106343
28 Wang L, He Y F, Shen J, et al. Effect of secondary orientation on oxidation anisotropy around the holes of single crystal superalloy during thermal fatigue tests [J]. Acta Metall. Sin., 2019, 55(11): 1417
doi: 10.11900/0412.1961.2019.00109
王 莉, 何禹锋, 申 健 等. 第二取向对第三代单晶高温合金热疲劳过程中冷却孔孔周氧化行为的影响研究 [J]. 金属学报, 2019, 55(11): 1417
29 Wang L, Liu X G, Zhang J, et al. High temperature oxidation of a single crystal nickel-base superalloy [J]. J. Iron Steel Res., 2011, 23(S2): 353
王 莉, 刘心刚, 张 健 等. 第三代单晶高温合金DD33的高温氧化行为 [J]. 钢铁研究学报, 2011, 23(S2): 353
[1] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] HAO Wenjun, JING Hemin, XI Tong, YANG Chunguang, YANG Ke. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. 材料研究学报, 2024, 38(2): 121-129.
[3] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[4] LIU Zhenhuan, LI Yonghan, LIU Yang, WANG Pei, LI Dianzhong. Carbide Evolution Behavior of GCr15 Bearing Steel During Aging Process[J]. 材料研究学报, 2024, 38(2): 130-140.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] YANG Renxian, MA Shucheng, CAI Xin, ZHENG Leigang, HU Xiaoqiang, LI Dianzhong. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] QIN Yanli, ZHAO Guangpu, ZHANG Hao, NI Dingrui, XIAO Bolv, MA Zongyi. Microstructure and Properties of Al-30Si Alloy Produced by Selective Laser Melting[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
No Suggested Reading articles found!