Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 228-234    DOI: 10.11901/1005.3093.2021.671
ARTICLES Current Issue | Archive | Adv Search |
Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics
ZHU Mingxing1, DAI Zhonghua2()
1.Tongling Polytechnic Department of Mechanical Engineering, Tongling 244000, China
2.School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China
Cite this article: 

ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics. Chinese Journal of Materials Research, 2023, 37(3): 228-234.

Download:  HTML  PDF(2872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new lead-free ceramic system (1-x)(Bi0.5Na0.5Ti0.95Al0.025Nb0.025O3)-x(SrSc0.5Nb0.5O3) [(1-x)BNTA-xSSN, x=0.05、0.1、0.15、0.2] was prepared by solid-state method. The effects of the introduction of SrSc0.5Nb0.5O3 on the structure, phase transformation, energy storage and dielectric properties were studied. The results showed that (1-x)BNTA-xSSN owns perovskite structure at room temperature. The Tmdecreases with the increase of SSN content, and the phase structure changes from tetragonal phase to pseudo-cubic phase. The ferroelectric properties of the ceramics were weakened and the relaxation ferroelectric properties were enhanced. When x=10%, the maximum effective energy storage density (Wrec) of BNTA-SSN ceramics is 2.7 J/cm3. The maximum energy storage efficiency (η) of BNTA-SSN ceramics is 85% at x=15%.

Key words:  inorganic non-metallic materials      phase structure      ceramics      relaxor ferroelectrics      energy storage density     
Received:  06 December 2021     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation of China(51062014);the Key Research and Development Program of Shaanxi Province(2023-YBGY-423);Xi'an Key Laboratory of Intelligence(2019220514SYS020CG042)
Corresponding Authors:  DAI Zhonghua, Tel: 18092679085, E-mail: zhdai@mail.xjtu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.671     OR     https://www.cjmr.org/EN/Y2023/V37/I3/228

Fig.1  XRD patterns of (1-x)BNTA-xSSN ceramics
Fig.2  SEM images of (1-x)BNTA-xSSN ceramics
Fig.3  Temperature-dependence of ɛ' and tanδ for (1-x)BNTA-xSSN ceramics x=5%; (b) x=10%; (c) x=15%; (d) x=20%
Fig.4  relationship between ln(1/ε-1/εm) and ln (T-Tc) and relationship between dispersion factor γ and SSN content for (1-x)BNTA-xSSN ceramics (x=5%, 10%, 15%, 20%)
Componentsx=0.05x=0.1x=0.15x=0.2
Tm /℃301295286278
Td /℃156918576
Table 1  Tm and Td for (1-x)(BNTA)-xSSN ceramics
Fig.5  (a) P-E curves of ceramics; (b) P-E curves of (1-x)(BNTA)-xSSN at 10Hz; (c) P-E curves of 0.90(BNTA)-0.10SSN ceramics under different electric fields; (d) P-E curves of 0.90(BNTA)-0.10SSN ceramics at different frequency
Fig 6  (a) Relationship between W and Wrec;(b) η and Wloss; (c) Pmax, Pr and Pmax-Pr; (d) the curves of Pmax-PrvsE for (1-x)(BNTA) -xSSN ceramics
1 Hou D W, Fan H Q, Zhang A, et al. Enhanced energy-storage properties and dielectric temperature stability of (Bi0.5Na0.5)0.84Sr0.16Ti1-x(Y0.5Nb0.5)xO3 lead-free ceramics [J]. Ceram Int, 2021, 47(24): 34059
doi: 10.1016/j.ceramint.2021.08.315
2 Peng P, Nie H C, Zheng C, et al. High-energy storage density in NaNbO3-modified (Bi0.5Na0.5)TiO3-BiAlO3-based lead-free ceramics under low electric field [J]. J. Am. Ceram. Soc., 2021, 104(6): 2610
doi: 10.1111/jace.v104.6
3 FANG B J, LIU X, ZHANG Z Q, et al. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics, Chin J Mater Res., 2017, 31(04): 248
方必军, 刘 星, 张震乾 等. BCZT无铅压电陶瓷的铁电相变 [J]. 材料研究学报, 2017, 31(04): 248
4 Love G R. Energy storage in ceramic dielectrics [J]. J. Am. Ceram. Soc., 1990, 73(2): 323
doi: 10.1111/jace.1990.73.issue-2
5 Gu Y, Li H B, Ma H H, et al. Research progress of dielectric materials for energy storage [J]. Insulating Materials, 2015, 48(11): 13
6 Burn I, Smyth D M. Energy storage in ceramic dielectrics [J]. J Mater Sci., 2012, 7(3): 339
doi: 10.1007/BF00555636
7 Dai Z H, Xie J L, Liu W G, et al. Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO3-Based Bulk Ceramics [J]. ACS Appl Mater & Inter., 2020, 27: 30289
8 Fletcher N H, Hilton A D, Ricketts B W. Optimization of energy storage density in ceramic capacitors [J]. J Phys D Appl Phys, 2009, 29(1): 253
doi: 10.1088/0022-3727/29/1/037
9 Zhang L, Hao X H, Zhang L W. Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 thick films [J]. Ceram Int, 2014, 40(6): 8847
doi: 10.1016/j.ceramint.2014.01.107
10 Jürgen R, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics [J]. J. Am. Ceram. Soc., 2009, 92(6): 25
11 Sun N N, Li Y, Liu X J, et al. High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures [J]. J. Power Sources, 2020, 488: 227457
12 Qi H, Zuo R Z, Xie A W, et al. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains [J]. Adv Funct Mater, 2019, 29(35): 1903877
doi: 10.1002/adfm.v29.35
13 Qi H, Zuo R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency [J]. J. Mater. Chem. A, 2019, 7(8): 3971
doi: 10.1039/C8TA12232F
14 Zhao N S, Fan H Q, Ning L, et al. Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2018, 101(12): 5578
doi: 10.1111/jace.2018.101.issue-12
15 Zhou M X, Liang R H, Zhou Z Y, et al. High energy storage properties of (Ni1/3Nb2/3)4+ complexion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics [J]. Mater. Res. Bull, 2018, 98: 166
doi: 10.1016/j.materresbull.2017.10.005
16 Liu B B, Wang X H, Li L S. Properties and microstructure of ultrafine crystalline barium titanate-based energy storage ceramics [J]. J. Chin. Eng, 2017, 39(6): 896
刘佰博, 王晓慧, 李龙土. 超细晶钛酸钡基储能陶瓷的性能与微观结构 [J]. 工程科学学报, 2017, 39(6): 896
17 Xie J L, Dai Z H, Ding X D, et al. Enhanced energy storage properties of Sr(Sc0.5Nb0.5)O3 modified (Bi0.47La0.03Na0.5)0.94Ba0.06TiO3 lead-free ceramics [J]. J Mater Sci, 2020, 45: 6
18 Yang H B, Liu P F, Yan F, et al. A novel lead-free ceramic with layered structure for high energy storage applications [J]. J Alloys Compd, 2019, 773: 244
doi: 10.1016/j.jallcom.2018.09.252
19 Nitish K, Aleksey I, Troy A, et al. Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications [J]. Appl Phys Lett, 2015, 106(252901): 106
20 Huang W, Chen Y, Li X, et al. Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics [J]. Appl Phys Lett, 2018, 113(20): 203902
doi: 10.1063/1.5054000
21 Wang X H, Li L T, Shen Z B, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications [J]. J. Mater. Chem. A, 2015, 3(35): 18146
doi: 10.1039/C5TA03614C
22 Du H L, Yang Z T, Gao F, et al. Lead-free Nonlinear Dielectric Ceramics for Energy Storage Applications: Current Status and Challenges [J]. J. Inorg Mater, 2018, 33: 1046
doi: 10.15541/jim20170594
杜红亮, 杨泽田, 高 峰 等. 无铅非线性介电储能陶瓷: 现状与挑战 [J]. 无机材料学报, 2018, 33: 1046
doi: 10.15541/jim20170594
23 Ogihara H, Randall C A, Susan T M. High energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics [J]. J. Am. Ceram. Soc., 2009, 92(8): 6
24 Neusel C, Jelitto H, Schneider G A. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown [J]. J. Appl Phys, 2015, 117(15): 154902
doi: 10.1063/1.4917208
25 Yuan Q B, Li G, Yao F Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics [J]. Nano Energy, 2018, 52: 203
doi: 10.1016/j.nanoen.2018.07.055
26 Wang X H, Wang H B, Mu M L, et al. Effect of Zn2P2O7 additive on the electrical breakdown strength and energy storage properties of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics [J]. Mater. Sci. Eng. B-Adv, 2017, 227: 22
doi: 10.1016/j.mseb.2017.10.004
27 Cheng H L, Zhou W C, Du H L, et al. Enhanced dielectric relaxor properties in (1-x)(K0.5Na0.5)NbO3-x(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramic [J]. J. Alloys Compd, 2013, 579: 192
doi: 10.1016/j.jallcom.2013.06.077
28 Amany E H, Ahmed E H, Desoky M M E. Observation of relaxor-like behavior in BT and PT doped glasses for energy storage applications [J]. J. Alloys Compd, 2018, 770: 906
doi: 10.1016/j.jallcom.2018.08.234
29 Li W B, Zhou D, Pang L X, et al. Novel barium titanate based capacitors with high energy density and fast discharge performance [J]. J. Mater. Chem. A, 2017, 5(37): 19607
doi: 10.1039/C7TA05392D
30 Yuan Q B, Yao F Z, Wang Y F, et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties [J]. J. Mater. Chem. C, 2017, 5(37): 9552
doi: 10.1039/C7TC02478A
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[15] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
No Suggested Reading articles found!