|
|
Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics |
ZHU Mingxing1, DAI Zhonghua2( ) |
1.Tongling Polytechnic Department of Mechanical Engineering, Tongling 244000, China 2.School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China |
|
Cite this article:
ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics. Chinese Journal of Materials Research, 2023, 37(3): 228-234.
|
Abstract A new lead-free ceramic system (1-x)(Bi0.5Na0.5Ti0.95Al0.025Nb0.025O3)-x(SrSc0.5Nb0.5O3) [(1-x)BNTA-xSSN, x=0.05、0.1、0.15、0.2] was prepared by solid-state method. The effects of the introduction of SrSc0.5Nb0.5O3 on the structure, phase transformation, energy storage and dielectric properties were studied. The results showed that (1-x)BNTA-xSSN owns perovskite structure at room temperature. The Tmdecreases with the increase of SSN content, and the phase structure changes from tetragonal phase to pseudo-cubic phase. The ferroelectric properties of the ceramics were weakened and the relaxation ferroelectric properties were enhanced. When x=10%, the maximum effective energy storage density (Wrec) of BNTA-SSN ceramics is 2.7 J/cm3. The maximum energy storage efficiency (η) of BNTA-SSN ceramics is 85% at x=15%.
|
Received: 06 December 2021
|
|
Fund: National Natural Science Foundation of China(51062014);the Key Research and Development Program of Shaanxi Province(2023-YBGY-423);Xi'an Key Laboratory of Intelligence(2019220514SYS020CG042) |
Corresponding Authors:
DAI Zhonghua, Tel: 18092679085, E-mail: zhdai@mail.xjtu.edu.cn
|
1 |
Hou D W, Fan H Q, Zhang A, et al. Enhanced energy-storage properties and dielectric temperature stability of (Bi0.5Na0.5)0.84Sr0.16Ti1-x(Y0.5Nb0.5)xO3 lead-free ceramics [J]. Ceram Int, 2021, 47(24): 34059
doi: 10.1016/j.ceramint.2021.08.315
|
2 |
Peng P, Nie H C, Zheng C, et al. High-energy storage density in NaNbO3-modified (Bi0.5Na0.5)TiO3-BiAlO3-based lead-free ceramics under low electric field [J]. J. Am. Ceram. Soc., 2021, 104(6): 2610
doi: 10.1111/jace.v104.6
|
3 |
FANG B J, LIU X, ZHANG Z Q, et al. Ferroelectric Phase Transition Character of BCZT Lead-free Piezoelectric Ceramics, Chin J Mater Res., 2017, 31(04): 248
|
|
方必军, 刘 星, 张震乾 等. BCZT无铅压电陶瓷的铁电相变 [J]. 材料研究学报, 2017, 31(04): 248
|
4 |
Love G R. Energy storage in ceramic dielectrics [J]. J. Am. Ceram. Soc., 1990, 73(2): 323
doi: 10.1111/jace.1990.73.issue-2
|
5 |
Gu Y, Li H B, Ma H H, et al. Research progress of dielectric materials for energy storage [J]. Insulating Materials, 2015, 48(11): 13
|
6 |
Burn I, Smyth D M. Energy storage in ceramic dielectrics [J]. J Mater Sci., 2012, 7(3): 339
doi: 10.1007/BF00555636
|
7 |
Dai Z H, Xie J L, Liu W G, et al. Effective Strategy to Achieve Excellent Energy Storage Properties in Lead-Free BaTiO3-Based Bulk Ceramics [J]. ACS Appl Mater & Inter., 2020, 27: 30289
|
8 |
Fletcher N H, Hilton A D, Ricketts B W. Optimization of energy storage density in ceramic capacitors [J]. J Phys D Appl Phys, 2009, 29(1): 253
doi: 10.1088/0022-3727/29/1/037
|
9 |
Zhang L, Hao X H, Zhang L W. Enhanced energy-storage performances of Bi2O3-Li2O added (1-x)(Na0.5Bi0.5)TiO3-xBaTiO3 thick films [J]. Ceram Int, 2014, 40(6): 8847
doi: 10.1016/j.ceramint.2014.01.107
|
10 |
Jürgen R, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics [J]. J. Am. Ceram. Soc., 2009, 92(6): 25
|
11 |
Sun N N, Li Y, Liu X J, et al. High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures [J]. J. Power Sources, 2020, 488: 227457
|
12 |
Qi H, Zuo R Z, Xie A W, et al. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains [J]. Adv Funct Mater, 2019, 29(35): 1903877
doi: 10.1002/adfm.v29.35
|
13 |
Qi H, Zuo R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency [J]. J. Mater. Chem. A, 2019, 7(8): 3971
doi: 10.1039/C8TA12232F
|
14 |
Zhao N S, Fan H Q, Ning L, et al. Temperature-stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3-doped (Bi0.5Na0.5)TiO3-(Sr0.7Bi0.2)TiO3 lead-free ceramics [J]. J. Am. Ceram. Soc., 2018, 101(12): 5578
doi: 10.1111/jace.2018.101.issue-12
|
15 |
Zhou M X, Liang R H, Zhou Z Y, et al. High energy storage properties of (Ni1/3Nb2/3)4+ complexion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics [J]. Mater. Res. Bull, 2018, 98: 166
doi: 10.1016/j.materresbull.2017.10.005
|
16 |
Liu B B, Wang X H, Li L S. Properties and microstructure of ultrafine crystalline barium titanate-based energy storage ceramics [J]. J. Chin. Eng, 2017, 39(6): 896
|
|
刘佰博, 王晓慧, 李龙土. 超细晶钛酸钡基储能陶瓷的性能与微观结构 [J]. 工程科学学报, 2017, 39(6): 896
|
17 |
Xie J L, Dai Z H, Ding X D, et al. Enhanced energy storage properties of Sr(Sc0.5Nb0.5)O3 modified (Bi0.47La0.03Na0.5)0.94Ba0.06TiO3 lead-free ceramics [J]. J Mater Sci, 2020, 45: 6
|
18 |
Yang H B, Liu P F, Yan F, et al. A novel lead-free ceramic with layered structure for high energy storage applications [J]. J Alloys Compd, 2019, 773: 244
doi: 10.1016/j.jallcom.2018.09.252
|
19 |
Nitish K, Aleksey I, Troy A, et al. Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications [J]. Appl Phys Lett, 2015, 106(252901): 106
|
20 |
Huang W, Chen Y, Li X, et al. Ultrahigh recoverable energy storage density and efficiency in barium strontium titanate-based lead-free relaxor ferroelectric ceramics [J]. Appl Phys Lett, 2018, 113(20): 203902
doi: 10.1063/1.5054000
|
21 |
Wang X H, Li L T, Shen Z B, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications [J]. J. Mater. Chem. A, 2015, 3(35): 18146
doi: 10.1039/C5TA03614C
|
22 |
Du H L, Yang Z T, Gao F, et al. Lead-free Nonlinear Dielectric Ceramics for Energy Storage Applications: Current Status and Challenges [J]. J. Inorg Mater, 2018, 33: 1046
doi: 10.15541/jim20170594
|
|
杜红亮, 杨泽田, 高 峰 等. 无铅非线性介电储能陶瓷: 现状与挑战 [J]. 无机材料学报, 2018, 33: 1046
doi: 10.15541/jim20170594
|
23 |
Ogihara H, Randall C A, Susan T M. High energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics [J]. J. Am. Ceram. Soc., 2009, 92(8): 6
|
24 |
Neusel C, Jelitto H, Schneider G A. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown [J]. J. Appl Phys, 2015, 117(15): 154902
doi: 10.1063/1.4917208
|
25 |
Yuan Q B, Li G, Yao F Z, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics [J]. Nano Energy, 2018, 52: 203
doi: 10.1016/j.nanoen.2018.07.055
|
26 |
Wang X H, Wang H B, Mu M L, et al. Effect of Zn2P2O7 additive on the electrical breakdown strength and energy storage properties of (Ba0.6Sr0.4)0.85Bi0.1TiO3 ceramics [J]. Mater. Sci. Eng. B-Adv, 2017, 227: 22
doi: 10.1016/j.mseb.2017.10.004
|
27 |
Cheng H L, Zhou W C, Du H L, et al. Enhanced dielectric relaxor properties in (1-x)(K0.5Na0.5)NbO3-x(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramic [J]. J. Alloys Compd, 2013, 579: 192
doi: 10.1016/j.jallcom.2013.06.077
|
28 |
Amany E H, Ahmed E H, Desoky M M E. Observation of relaxor-like behavior in BT and PT doped glasses for energy storage applications [J]. J. Alloys Compd, 2018, 770: 906
doi: 10.1016/j.jallcom.2018.08.234
|
29 |
Li W B, Zhou D, Pang L X, et al. Novel barium titanate based capacitors with high energy density and fast discharge performance [J]. J. Mater. Chem. A, 2017, 5(37): 19607
doi: 10.1039/C7TA05392D
|
30 |
Yuan Q B, Yao F Z, Wang Y F, et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties [J]. J. Mater. Chem. C, 2017, 5(37): 9552
doi: 10.1039/C7TC02478A
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|