Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (11): 801-810    DOI: 10.11901/1005.3093.2021.315
ARTICLES Current Issue | Archive | Adv Search |
Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK
CUI Li1, SUN Lili1, GUO Peng1, MA Xin1,3, WANG Shuyuan1,2, WANG Aiying1,2()
1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory for Manufacturing System Engineering, Xi′an Jiaotong University, Xi′an 710049, China
Cite this article: 

CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK. Chinese Journal of Materials Research, 2022, 36(11): 801-810.

Download:  HTML  PDF(7163KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diamond-like carbon (DLC) films with different thickness (11.26~230.93 nm) were prepared on polyether ether ketone (PEEK) via direct current magnetron sputtering in the time ranging from 2 to 40 min. The effect of deposition time on the structure and composition of surface and interface, as well as the surface hydrophobic, the mechanical and optical transmittance properties of composite films PEEK/DLC were systematically studied. Results show that with the increase of deposition time the film thickness will be enhanced linearly with an average deposition rate of 5.71 nm/min. The density of C atoms and the interface interlocking structure gradually increase, while the interface adhesion decreases with time. By fitting peaks of Raman and XPS spectra, it is found that when the time ≤15 min, the ID/IGvalue by data fitting remains at 0.23~0.25 and the ratio of sp2/sp3 is low (0.58~0.74) due to the influence of substrate. When the time >15 min, as the substrate effect becomes weak the ID/IG value has a great increase (to 0.81), and the sp2/sp3 value turns to be high (0.96~1.12). Prolonging the time will lead to the rise of substrate temperature inducing the ascending of sp2/sp3 ratio. While O content at the surface presents a low-flat trend and part of C=O bonds transformed into C-O bonds. The hardness, elastic modulus, the anti-ultraviolet and infrared barrier properties of PEEK/DLC composite films will rise over time, while the surface roughness and hydrophobicity both have a trend from high to low, reaching a maximum surface roughness and water contact angle of 495 nm and 108.29° at 32 min, respectively.

Key words:  surface and interface in the materials      polyether ether ketone      diamond-like carbon films      surface modification      deposition time      interface adhesion     
Received:  19 May 2021     
ZTFLH:  O484  
Fund: K C Wong Education Foundation Lujiaxi International Team Project(GJTD-2019-13);Natural Science Foundation of Zhejiang Province(LQ20E020004);Science and Technology 2025 Innovation Project of Ningbo(2020Z023);Science and Technology 2025 Innovation Project of Ningbo(2018B10012)
About author:  WANG Aiying, Tel: (0574)86685170, E-mail: aywang@nimte.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.315     OR     https://www.cjmr.org/EN/Y2022/V36/I11/801

Fig.1  Schematic diagram of the deposition system for DLC films
Fig.2  Surface SEM images of PEEK/DLC composite films with different time (a, b) 2 min, (c, d) 8 min, (e, f) 15 min, (g, h) 20 min, (i, j) 32 min, (k, l) 40 min
Fig.3  Cross-section HRTEM images of PEEK/DLC composite films with different time (a) 2 min, (b) 8 min, (c) 15 min, (d) 20 min, (e) 32 min, (f) 40 min, (g) enlarged image of DLC films, (h, i) interface structures of 32 and 40 min
Fig.4  Curves of the thickness and the average deposition rate of DLC films on PEEK over time
Fig.5  SEM images of PEEK/DLC composite films with different time (a, b) 2 min, (c, d) 8 min, (e, f) 15 min, (g, h) 20 min, (i, j) 32 min, (k, l) 40 min
Fig.6  Raman spectra (a), ID/IG ratio of PEEK/DLC composite films, chamber temperature with different time and the molecular structure of PEEK (b)
Fig.7  O 1s (a) and C 1s spectra (b), the content of C element, O element, C-O bond and C=O bond, and the ratio of C/O (c), the content of sp2 and sp3, the ratio of sp2/sp3 (d) for the surface of PEEK/DLC composite films with different time analyzed
Fig.8  Curves of the surface roughness (Ra) and water contact angles for PEEK/DLC composite films over time
Fig.9  Surface three dimensional height images of PEEK/DLC at different time (a) virgin PEEK, (b) 2 min, (c) 8 min, (d) 15 min, (e) 20 min, (f) 32 min, (g) 40 min
Fig.10  Curves of the hardness and elastic modulus for PEEK/DLC composite films over time
Fig.11  Transmission curves of PEEK / DLC composition films prepared at different time (a) and enlarged image of part A (b)
1 Zheng Y Y, Xiong C D, Wang Z C, et al. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response [J]. Appl. Surf. Sci., 2015, 344: 79
doi: 10.1016/j.apsusc.2015.03.113
2 Tsuka H, Morita K, Kato K, et al. Effect of laser groove treatment on shear bond strength of resin-based luting agent to polyetheretherketone (PEEK) [J]. J. Prosthodont. Res., 2019, 63: 52
doi: S1883-1958(18)30213-5 pmid: 30220621
3 Li X W, Zhang D, Lee K R, et al. Effect of metal doping on structural characteristics of amorphous carbon system: a first-principles study [J]. Thin Solid Films, 2016, 607: 67
doi: 10.1016/j.tsf.2016.04.004
4 Wang A Y, Lee K R, Ahn J P, et al. Structure and mechanical properties of W incorporated diamond-like carbon films prepared by a hybrid ion beam deposition technique [J]. Carbon, 2006, 44: 1826
doi: 10.1016/j.carbon.2005.12.045
5 Takikawa H, Miyakawa N, Minamisawa S, et al. Fabrication of diamond-like carbon film on rubber by T-shape filtered-arc-deposition under the influence of various ambient gases [J]. Thin Solid Films, 2004, 457: 143
doi: 10.1016/j.tsf.2003.12.029
6 Ma X, Zhang Q, Guo P, et al. Residual compressive stress enabled 2D-to-3D junction transformation in amorphous carbon films for stretchable strain sensors [J]. ACS Appl. Mater. Interfaces, 2020, 12: 45549
doi: 10.1021/acsami.0c12073
7 Smietana M, Bock W J, Szmidt J. Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method [J]. Thin Solid Films, 2011, 519: 6339
doi: 10.1016/j.tsf.2011.04.032
8 Shirakura A, Nakaya M, Koga Y, et al. Diamond-like carbon films for PET bottles and medical applications [J]. Thin Solid Films, 2006, 494: 84
doi: 10.1016/j.tsf.2005.08.366
9 Martinez-Martinez D, De Hosson J T M. On the deposition and properties of DLC protective coatings on elastomers: a critical review [J]. Surf. Coat. Technol., 2014, 258: 677
doi: 10.1016/j.surfcoat.2014.08.016
10 Qiang L, Bai C N, Gong Z B, et al. Microstructure, adhesion and tribological behaviors of Si interlayer/Si doping diamond-like carbon film developed on nitrile butadiene rubber [J]. Diamond Relat. Mater., 2019, 92: 208
doi: 10.1016/j.diamond.2019.01.005
11 Xu W, Lin S S, Dai M J, et al. Effects of bias voltage on the microstructure and properties of Al-doped hydrogenated amorphous carbon films synthesized by a hybrid deposition technique [J]. Vacuum, 2018, 154: 159
doi: 10.1016/j.vacuum.2018.05.008
12 Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J]. Phys. Rev., 2001, 64B: 075414
13 Park S J, Ko T J, Yoon J, et al. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates [J]. Appl. Surf. Sci., 2018, 427: 1
14 Martinez-Martinez D, Schenkel M, Pei Y T, et al. Microstructural and frictional control of diamond-like carbon films deposited on acrylic rubber by plasma assisted chemical vapor deposition [J]. Thin Solid Films, 2011, 519: 2213
doi: 10.1016/j.tsf.2010.11.006
15 Hatada R, Flege S, Ensinger W, et al. Deposition of diamond-like carbon films on insulating substrates by plasma source ion implantation [J]. Surf. Coat. Technol., 2020, 385: 125426
doi: 10.1016/j.surfcoat.2020.125426
16 Zhang X Q, Huang M D, Ke P L, et al. Impact of bias on the graphite-like carbon films grown by high power impulse magnetron sputtering [J]. Chin. J. Vac. Sci. Technol., 2013, 33: 969
张学谦, 黄美东, 柯培玲 等. 基体偏压对高功率脉冲磁控溅射制备类石墨碳膜的影响研究 [J]. 真空科学与技术学报, 2013, 33: 969
17 Schenkel M, Martinez-Martinez D, Pei Y T, et al. Tribological performance of DLC films deposited on ACM rubber by PACVD [J]. Surf. Coat. Technol., 2011, 205: 4838
doi: 10.1016/j.surfcoat.2011.04.072
18 Konkhunthot N, Photongkam P, Wongpanya P. Improvement of thermal stability, adhesion strength and corrosion performance of diamond-like carbon films with titanium doping [J]. Appl. Surf. Sci., 2019, 469: 471
doi: 10.1016/j.apsusc.2018.11.028
19 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
20 Zhang S, Zeng X T, Xie H, et al. A phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films [J]. Surf. Coat. Technol., 2000, 123: 256
doi: 10.1016/S0257-8972(99)00523-X
21 Zeng Y L, Jiang L, Cai X Y, et al. Identification of the characteristic vibrations for 16 PAHs based on Raman spectrum [J]. Spectrosc. Spect. Anal., 2014, 34: 2999
曾娅玲, 姜 龙, 蔡啸宇 等. 拉曼光谱的16种多环芳烃(PAHs)特征振动光谱辨识 [J]. 光谱学与光谱分析, 2014, 34: 2999
22 Kim S, Lee K J, Seo Y. Polyetheretherketone (PEEK) surface functionalization by low-energy ion-beam irradiation under a reactive O2 environment and its effect on the PEEK/Copper adhesives [J]. Langmuir, 2004, 20: 157
doi: 10.1021/la035396h
23 Roy M, Kubacki J, Psiuk B, et al. Photofunctionalization effect and biological ageing of PEEK, TiO2 and ZrO2 abutments material [J]. Mater. Sci. Eng., 2021, 121C: 111823
24 Robertson J. Diamond-like amorphous carbon [J]. Mater. Sci. Eng., 2002, 37R: 129
25 Liu F X, Yao K L, Liu Z L. Substrate tilting effect on structure of tetrahedral amorphous carbon films by Raman spectroscopy [J]. Surf. Coat. Technol., 2007, 201: 7235
doi: 10.1016/j.surfcoat.2007.01.030
26 Soin N, Roy S S, Ray S C, et al. Thickness dependent electronic structure of ultra-thin tetrahedral amorphous carbon (ta-C) films [J]. Thin Solid Films, 2012, 520: 2909
doi: 10.1016/j.tsf.2011.12.039
27 Sattel S, Robertson J, Ehrhardt H. Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon [J]. J. Appl. Phys., 1997, 82: 4566
doi: 10.1063/1.366193
28 Huang J X, Wan S H, Liu B, et al. Improved adaptability of PEEK by Nb doped graphite-like carbon composite coatings for bio-tribological applications [J]. Surf. Coat. Technol., 2014, 247: 20
doi: 10.1016/j.surfcoat.2014.03.016
29 Du J Y, Zhang G F, Li G Q, et al. Diamond-like-carbon film prepared on stainless steel substrates by liquid phase electrochemical deposition [J]. Electrochemistry, 2007, 13: 58
杜景永, 张贵锋, 李国卿 等. 不锈钢上液相电沉积类金刚石薄膜 [J]. 电化学, 2007, 13: 58
30 Ko T J, Her E K, Shin B, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50: 5085
doi: 10.1016/j.carbon.2012.06.048
31 Shin B, Lee K R, Moon M W, et al. Extreme water repellency of nanostructured low-surface-energy non-woven fabrics [J]. Soft Matter, 2012, 8: 1817
doi: 10.1039/C1SM06867A
32 Ko T J, Her E K, Shin B, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50: 5085
doi: 10.1016/j.carbon.2012.06.048
33 Asl A M, Kameli P, Ranjbar M, et al. Correlations between microstructure and hydrophobicity properties of pulsed laser deposited diamond-like carbon films [J]. Superlattices Microst., 2015, 81: 64
doi: 10.1016/j.spmi.2014.11.041
34 Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Faraday Soc., 1944, 40: 546
35 Cha T G, Yi J W, Moon M W, et al. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness [J]. Langmuir, 2010, 26: 8319
doi: 10.1021/la9047402
36 Yang S, Zhang Y W, Zeng K Y. Analysis of nanoindentation creep for polymeric materials [J]. J. Appl. Phys., 2004, 95: 3655
doi: 10.1063/1.1651341
37 Liu C K, Lee S, Sung L P, et al. Load-displacement relations for nanoindentation of viscoelastic materials [J]. J. Appl. Phys., 2006, 100: 033503
38 Briscoe B J, Fiori L, Pelillo E. Nano-indentation of polymeric surfaces [J]. J. Phys., 1998, 31D: 2395
39 Xu Z Y, Zheng Y J, Jiang F, et al. The microstructure and mechanical properties of multilayer diamond-like carbon films with different modulation ratios [J]. Appl. Surf. Sci., 2013, 264: 207
doi: 10.1016/j.apsusc.2012.10.003
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[5] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[9] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[12] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[13] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[14] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[15] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
No Suggested Reading articles found!