Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 203-210    DOI: 10.11901/1005.3093.2022.076
ARTICLES Current Issue | Archive | Adv Search |
Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber
WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong()
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Cite this article: 

WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber. Chinese Journal of Materials Research, 2023, 37(3): 203-210.

Download:  HTML  PDF(5756KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon fiber was surface modified with dopamine via self-polymerizing deposition process, then the polyamide 6-based composites (CF/PA6) were prepared with the modified carbon fiber as reinforcement. The morphology, roughness, wettability and chemical construction of carbon fiber were characterized by scanning electron microscope (SEM), atomic force microscope (AFM), contact angle measuring device, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS). The effect of deposition time of polydopamine (PDA) on the interface mechanical properties of the composites was also investigated. The results show that the surface of the modified carbon fiber was covered by a uniform PDA film, which significantly increased the surface activity, surface roughness and chemical bond energy of the carbon fiber, and greatly improved the interfacial compatibility between the carbon fiber and polyamide 6 matrix. The optimal PDA deposition time for the modification of carbon fiber was 16h, correspondingly, with the optimally modified carbon fiber as reinforcement, the interlaminar shear strength and bending strength of composites reached 31.7 MPa and 308.2 MPa, which was 72.3% and 56.9% higher respectively than those of the ones reinforced with the blank carbon fiber.

Key words:  composite      CF/PA6 composite      impregnation      polydopamine      interfacial bonding strength      surface modification     
Received:  26 January 2022     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(21872123);National Natural Science Foundation of China(22172143)
Corresponding Authors:  LI Renhong, Tel: 13858043885, E-mail: lirenhong@zstu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.076     OR     https://www.cjmr.org/EN/Y2023/V37/I3/203

Fig.1  Infrared spectra of UCF、PDA and PDA-UCF
Fig.2  SEM images of UCF (a), PDA-UCF-12 h (b), PDA-UCF-14 h (c), PDA-UCF-16 h (d) and PDA-UCF-18 h (e)
Fig.3  Typical load-displacement curves in the interlaminar shear testing (a), interlaminar shear strength (ILSS) of composites (b), typical load-displacement curvers in the flexural testing (c), flexural strength and modulus (d) of composites
Fig.4  AFM images of surfaces of UCF (a1, a2) and PDA-UCF-16 h (b1, b2) (a1, b1=5 μm scale, a2, b2=1 μm scale)
Fig.5  Contact angle (a) and surface energy (b) of different carbon fibers
SamplesC1sO1sN1sO/CN/C
UCF78.8718.212.910.230.03
PDA-UCF-16 h66.9729.913.120.450.05
PDA-UCF-16 ha69.5327.482.990.400.04
Table 1  Surface element concentration of different carbon fibers (%, mass fraction)
Fig.6  XPS survey spectra, C1s and N1s peak-fitting curves of UCF (a, d); PDA-UCF-16 h (b, e) and PDA-UCF-16 ha (c, f)
Binding energy/eVAttributionsConcentration / %
UCFPDA-UCF-16 hPDA-UCF-16 ha
284.7C-C56.845.049.32
285.1C-N29.2836.6733.29
286.4C-O11.8913.6212.29
288.8O-C=O2.033.793.94
290.9π-π*-0.921.16
Table 2  Surface functional group concentration of different carbon fibers
Fig.7  Schematic diagram of interface properties reinforcing mechanisms of the CF/PA6 composites
1 Chen J C, Xu H J, Liu C T, et al. The effect of double grafted interface layer on the properties of carbon fiber reinforced polyamide 66 composites [J]. Compos. Sci. Technol., 2018, 168: 20
doi: 10.1016/j.compscitech.2018.09.007
2 Liu L, Yan F, Li M, et al. A novel thermoplastic sizing containing graphene oxide functionalized with structural analogs of matrix for improving interfacial adhesion of CF/PES composites [J]. Composites, 2018, 114A: 418
3 Zhao Z B, Teng K Y, Li N, et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface [J]. Compos. Struct., 2017, 159: 761
doi: 10.1016/j.compstruct.2016.10.022
4 Tian Y, Zhang H, Zhang Z. Influence of nanoparticles on the interfacial properties of fiber-reinforced-epoxy composites [J]. Composites, 2017, 98A: 1
5 Cho B G, Joshi S R, Han J H, et al. Interphase strengthening of carbon fiber/polyamide 6 composites through mixture of sizing agent and reduced graphene oxide coating [J]. Composites, 2021, 149A: 106521
6 Zhao Y Z, Liu F Y, Lu J, et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites [J]. Fibers Polym., 2017, 18: 1586
doi: 10.1007/s12221-017-1257-8
7 Yan T W, Yan F, Li S Y, et al. Interfacial enhancement of CF/PEEK composites by modifying water-based PEEK-NH2 sizing agent [J]. Composites, 2020, 199B: 108258
8 Luo L, Fei J, Duan X, et al. Chemically grafting APS onto MnO2 nanosheets as a new interphase for improving interfacial properties in carbon fiber composites [J]. Tribol. Int., 2019, 134: 145
doi: 10.1016/j.triboint.2019.01.044
9 Zhan Y K, Zhao Q, Li L P, et al. Research progress of carbon fiber surface modification [J]. Eng. Plast. Appl., 2019, 47(10):135
战奕凯, 赵 潜, 李莉萍 等. 碳纤维表面改性研究进展 [J]. 工程塑料应用, 2019, 47(10): 135
10 Chen J L, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface [J]. Compos. Sci. Technol., 2018, 154: 175
doi: 10.1016/j.compscitech.2017.11.005
11 Sui X H, Shi J, Yao H W, et al. Interfacial and fatigue-resistant synergetic enhancement of carbon fiber/epoxy hierarchical composites via an electrophoresis deposited carbon nanotube-toughened transition layer [J]. Composites, 2017, 92A: 134
12 Yuan X Y, Jiang J, Wei H W, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite [J]. Compos. Sci. Technol., 2021, 201: 108496
doi: 10.1016/j.compscitech.2020.108496
13 Yao S S, Jin F L, Rhee K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review [J]. Composites, 2018, 142B: 241
14 Shang L, Zhang M J, Liu L, et al. Improving the interfacial property of carbon fibre/epoxy resin composites by grafting amine-capped cross-linked poly-itaconic acid [J]. Surf. Interface Anal., 2019, 51: 199
doi: 10.1002/sia.6565
15 Yan F, Liu L, Li M, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites [J]. Composites, 2019, 125A: 105530
16 Dong G Y, Ding Y M, Yang W M, et al. Combined ultrasonic-hydrogen peroxide oxidation treatment of continuous carbon fiber surfaces [J]. J. Beijing Univ. Chem. Technol. (Nat. Sci.), 2017, 44(6): 45
董广雨, 丁玉梅, 杨卫民 等. 超声波-双氧水联合氧化处理连续碳纤维表面的研究 [J]. 北京化工大学学报(自然科学版), 2017, 44(6): 45
17 Cho B G, Lee J E, Hwang S H, et al. Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization [J]. Composites, 2020, 135A: 105938
18 Kim J, Mauchauffé R, Kim D, et al. Mechanism study of atmospheric-pressure plasma treatment of carbon fiber reinforced polymers for adhesion improvement [J]. Surf. Coat. Technol., 2020, 393: 125841
doi: 10.1016/j.surfcoat.2020.125841
19 Zhang C, Liu L S, Xu Z W, et al. Improvement for interface adhesion of epoxy/carbon fibers endowed with carbon nanotubes via microwave plasma-enhanced chemical vapor deposition [J]. Polym. Compos., 2018, 39: E1262
doi: 10.1002/pc.v39.S2
20 Jin L, Zhang M J, Shang L, et al. A nature-inspired interface design strategy of carbon fiber composites by growing brick-and-mortar structure on carbon fiber [J]. Compos. Sci. Technol., 2020, 200: 108382
doi: 10.1016/j.compscitech.2020.108382
21 Du L L, Wang G, Yan X Q, et al. Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H2 production via aqueous formaldehyde reforming [J]. Sustainable Energy Fuels, 2021, 5(18):4575
doi: 10.1039/D1SE00984B
22 Liu Y, Fang Y C, Liu X L, et al. Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion [J]. Compos. Sci. Technol., 2017, 151: 164
doi: 10.1016/j.compscitech.2017.08.008
23 Gao H C, Sun Y M, Zhou J J, et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification [J]. ACS Appl. Mater. Interfaces, 2013, 5: 425
doi: 10.1021/am302500v
24 Fang J P, Zhang L, Li C Z. Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting, infiltration and crystallization [J]. Polymer, 2019, 172: 253
doi: 10.1016/j.polymer.2019.03.013
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
No Suggested Reading articles found!